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Abstract

Numerical and mathematical skills are critical predictors of academic success. The last
three decades have seen a substantial growth in our understanding of how the human
mind and brain represent and process numbers. In particular, research has shown that
we share with animals the ability to represent numerical magnitude (the total number
of items in a set) and that preverbal infants can process numerical magnitude. Further
research has shown that similar processing signatures characterize numerical magni-
tude processing across species and developmental time. These findings suggest that
an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude repre-
sentation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic
numerals) representations of numerical magnitude. This chapter explores this hypoth-
esis by reviewing studies that have examined the relation between individual differ-
ences in nonsymbolic numerical magnitude processing and symbolic math abilities
(e.g., arithmetic). Furthermore, we examine the extent to which the available literature
provides strong evidence for a link between symbolic and nonsymbolic representations
of numerical magnitude at the behavioral and neural levels of analysis. We conclude
that claims that symbolic number abilities are grounded in the approximate system
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for the nonsymbolic representation of numerical magnitude are not strongly supported
by the available evidence. Alternative models and future research directions are
discussed.

1. INTRODUCTION

Numerical information informs our everyday behavior. Consider a

glance at the alarm clock in the morning, counting change in the line-up

at the coffee shop, or reading about the latest election polls—each of these

common situations places demands on the ability to process numerical infor-

mation. Research has shown that the ability to process numbers and use

them in mathematical operations (such as calculation) is a critical predictor

of an individual’s economic and social success (e.g., Bynner & Parsons,

1997). Longitudinal studies investigating the predictors of academic

achievement reveal that school-entry numerical and mathematical skills

are a strong predictor of later academic achievement. School-entry math

skills are a stronger predictor of later achievement than both school-entry

reading and attentional skills (e.g., Duncan et al., 2007). Findings such as

these demonstrate the critical role that numerical and mathematical knowl-

edge and skills play in children’s academic development and outcomes.

What do we know about how numbers are represented in the brain and

mind and how such representations change over the course of learning and

development? The past three decades have seen a surge in the empirical

study of number representation and processing in multiple species and at dif-

ferent levels of analyses (for reviews, see Ansari, 2008; Dehaene, 1997;

Nieder &Dehaene, 2009). The aim of this chapter is to provide an overview

of this research and to synthesize what is currently known, as well as to

discuss open questions and future research directions.

2. AN APPROXIMATE SYSTEM FOR THE
REPRESENTATION OF NUMERICAL MAGNITUDE

Much of the research on how we represent and process numerical

information has been focused on uncovering the foundational systems that

underpin the development of complex numerical and mathematical abilities.

In particular, there has been a focus on understanding the representations of

numerical magnitude, or the total number of items in a set. The represen-

tation of processing numerical magnitude has been investigated from infancy

onward at both the behavioral and brain levels of analysis. In addition to
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studies with humans, numerical magnitude processing has been investigated

in nonhuman primates in an effort to investigate cross-species similarities and

differences in processing (Dehaene, 1997; Nieder & Dehaene, 2009). These

studies have revealed that there are similarities in the way in which non-

human primates, human infants, children, and adults represent and process

numerical magnitude. This convergence across species and developmental

time has lead to the suggestion that humans are born with an approximate

system for the processing of numerical magnitude.

Data from looking time paradigms have demonstrated that young infants

can discriminate between numerical quantities. In a seminal study, Xu and

Spelke (2000) found that 6-months-old infants discriminate between an

array of 8 dots and an array of 16 dots, but not between 8 versus 12 dots.

These results not only demonstrated for the first time that young infants

can discriminate between two arrays of relatively large numerical magni-

tudes but also that their ability to do so is influenced by the numerical ratio

(smaller/larger) between the numerical quantities. This pattern of results has

been widely replicated, and the precision with which infants can discrimi-

nate between numerical magnitudes improves over the first year of life (see

Libertus & Brannon, 2009 for a review of the infant numerical magnitude

processing literature).

The influence of numerical distance and ratio on numerical magnitude

discrimination has been demonstrated in numerous studies with both human

children and adults (e.g., Moyer & Landauer, 1967; Sekuler &Mierkiewicz,

1977). Specifically, when children and adults judge which of two numerical

magnitudes (either numerical symbols, such as Arabic numerals or non-

symbolic stimuli, such as dot arrays, see Figure 1) are numerically larger,

the speed and accuracy of their judgments is correlated with the numerical

distance, and ratio of the numerical magnitude they compare. For children

and adults, the larger the numerical distance between the magnitudes (or the

closer the ratio between them is to 1), the slower and more error-prone their

judgments of relative numerical magnitude are (see Figure 2).

Figure 1 Symbolic and nonsymbolic versions of the numerical magnitude
comparison task.
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As noted by Moyer and Landauer (1967) in their seminal paper, the

numerical ratio explains more variability in numerical magnitude compar-

ison data than does the numerical distance. Take, for example, the compar-

isons of a stimulus display of 8 versus 9 and a display of 1 versus 2. Both of

these number pairs have a numerical distance of 1 but their ratio is different.
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Figure 2 Examples of the numerical distance effect (NDE) (A) and the numerical ratio
effect (NRE) (B).
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Thus, a numerical distance effect would predict similar response times for

both pairs, while the ratio effect predicts longer reaction times for 8 versus

9 compared to 1 versus 2 (i.e., 1 is 50% of 2, while 8 is 88% of 9). Despite the

better prediction of reaction time data during comparison when ratio rather

than distance is the independent variable, distance and ratio are highly cor-

related; thus, very similar predictions result in slight differences in the var-

iance explained, rather than representing radically different models of

numerical magnitude comparison data.

In addition to the demonstrated existence of qualitatively similar distance

and ratio effects in studies with humans ranging from young infants to adults,

the influence of distance/ratio on numerical magnitude discrimination has

also been shown in studies of nonhuman primates (e.g., Brannon & Terrace,

1998; Cantlon & Brannon, 2006).

This body of evidence has lead to the proposal that humans share with

other species an approximate system for the representation and processing of

numerical magnitude, and given findings from infants, that humans are born

with such a system (for a review, see Cantlon, 2012). It is because of the

effect of numerical distance/ratio that the system is purported to represent

numerical magnitude approximately. That is, if numerical magnitudes were

represented exactly, then the ability to discriminate between them should

not vary as a function of their similarity (i.e., as a function of distance/ratio),

which is of course not the case. The fact that similarity between numbers

predicts how well they can be differentiated from one another suggests that

numbers that are close are represented more similarly than those that are

comparatively further apart. Moreover, the existence of the numerical ratio

effect suggests that the similarity between numerical magnitudes will

increase as a function of their size. For example, the similarity between 9

and 8 is greater than that between 1 and 2. In this way, nonsymbolic numer-

ical magnitudes are thought to be represented in an analog rather than digital

format (Lyons, Ansari, & Beilock, in press). The most prominent account of

the numerical distance/ratio effects posits that numbers are represented

along a mental continuum (a “mental number line”) and that the represen-

tations of numerical magnitude overlap with one another, but that their

overlap decreases as a function of the numerical distance/ratio between them

(see Figure 2). While some have argued that numbers are represented on a

linear scale (Figure 3, panel A), other researchers contend that the Gaussian

tuning curves have a fixed width, but are represented along a logarithmic

number line (Figure 3, panel B). It is beyond the scope of this chapter to

discuss these subtle differences in the way in which the analog representation
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of numerical magnitude has been conceptualized (for a review, see

Feigenson, Dehaene, & Spelke, 2004). It is important to note in the context

of the current discussion that representations are thought to be approximate/

analog in both models. Thus according to this account, the observation of

ratio/distance effects across species and human developmental time indicates

the existence of an approximate system of numerical magnitude representa-

tion that is likely evolutionarily ancient (given the evidence from nonhuman

primates) and innate (given the evidence from very young human infants).

In addition to behavioral evidence (such as looking times or reaction

times), recent advances in noninvasive neuroimaging have allowed

researchers to search for the neural correlates of numerical magnitude rep-

resentations. Researchers have found that a brain region referred to as the

parietal cortex, and in particular the intraparietal sulcus (see Figure 4), plays

a key role in numerical magnitude processing (for reviews, see Ansari, 2008;

Figure 3 Models of the approximate representations of numerical magnitude.

Figure 4 Reconstruction of the human brain, showing the intraparietal sulcus (IPS) dis-
played in green (light gray in the print version).
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Nieder & Dehaene, 2009). Moreover, studies with infants and young

children have revealed that this brain region is activated during numerical

magnitude processing from an early age onward (Cantlon, Brannon,

Carter, & Pelphrey, 2006; Hyde, Boas, Blair, & Carey, 2010; Izard,

Dehaene-Lambertz, & Dehaene, 2008). Thus, brain imaging provides

another source of evidence in support of the notion that an approximate

system for the representation of numerical magnitude exists from an early

age onward and that there are qualitative similarities in the representation

of numerical magnitude over the course of development.

3. THE SYMBOLIC REPRESENTATION OF NUMERICAL
MAGNITUDE

The literature just reviewed suggests the existence of an approximate

representation of numerical magnitude that humans share with other species

and that can be measured very early in human development. All of the find-

ings reviewed thus far relied upon nonsymbolic representations of numerical

magnitude (e.g., dot arrays) to glean insights into the representation and

processing of numerical magnitude. In contrast to nonhuman primates,

however, humans who grow up in literate cultures acquire symbolic repre-

sentations of numerical magnitude, such as number words and Arabic

numerals. Arabic numerals are something of a quasi-universal language of

mathematics, since they are used to represent numerical magnitude across

the globe. This raises a key question: Is the human acquisition of symbolic

representations of numerical magnitude grounded in the approximate,

potentially innate nonsymbolic representations of numerical magnitude?

Various researchers have hypothesized that children’s approximate, non-

symbolic numerical magnitude processing abilities form the foundation on

which more sophisticated, symbolic, culturally acquired mathematical skills

rest (e.g., Dehaene, 1997).

If this hypothesis is correct, one would expect that a child with a repre-

sentation of nonsymbolic numerical magnitude (e.g., one that is especially

accurate) would be more likely to excel on mathematical tasks, such as stan-

dardized tests of symbolic arithmetic and other math abilities. In fact, several

recent papers have shown just that: Individual differences in adults’,

children’s, and infants’ ability to process nonsymbolic numerical magnitudes

relate to performance on a wide range of formal math achievement

tests (Bonny & Lourenco, 2013; Desoete, Ceulemans, De Weerdt, &

Pieters, 2012; Gilmore, McCarthy, & Spelke, 2010; Gray & Reeve,

2014; Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Halberda,
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Mazzocco, & Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011,

2013; Libertus, Odic, & Halberda, 2012; Lonnemanna, Linkersd€orfera,
Hasselhorna, & Lindberg, 2011; Lourenco, Bonny, Fernandez, & Rao,

2012; Lyons & Beilock, 2011; Mazzocco, Feigenson, & Halberda,

2011a,b; Piazza et al., 2010; Starr, Libertus, & Brannon, 2013; vanMarle,

Chu, Li, & Geary, 2014; for a review, see Feigenson, Libertus, &

Halberda, 2013). To measure nonsymbolic numerical magnitude processing

ability, many of these studies ask participants to determine which of two

arrays of objects (typically dots on a computer screen) contains more objects

(right panel of Figure 1). Arrays are typically presented too quickly for par-

ticipants to count the dots individually, so they must instead rely on their

intuitive sense of approximate magnitude. Howwell a person is able to com-

plete this task is taken as a measure of the strength of their number sense.

Using this method, for example, Halberda et al. (2012) showed that individ-

uals with stronger (or more precise) representations of nonsymbolic numer-

ical magnitude tend to report better math achievement scores—an effect

that remains stable more or less throughout the life span and exists even

after controlling for achievement scores in nonmathematical domains. In

a similar vein, Libertus et al. (2011) showed that preschoolers’ number

sense predicted math scores at the onset of formal math instruction and that

performance on a dot-comparison task predicted college students’ math

scores on a college entrance exam (i.e., their math SAT scores; Libertus

et al., 2012).

It is important to note, however, that these correlations do not disclose

the causal direction between number sense and mathematical achievement.

Seeking thus to draw a stronger causal claim, researchers have recently

shown that approximate arithmetic training (e.g., estimating the sum of

two or more dot arrays) improves symbolic math achievement scores in both

adults (Park & Brannon, 2013, 2014) and in children (Hyde, Khanum, &

Spelke, 2014). Taken together, these studies provide indirect evidence to

suggest that a child’s (possibly innate) ability to represent nonsymbolic mag-

nitudes forms an initial footing fromwhich more sophisticated math abilities

develop. In other words, these results lend some confidence to the exciting

possibility that evolutionarily ancient neural systems (the approximate num-

ber system, in this case) are co-opted to help shape the way that cultural

inputs (such as number symbols) underpinmore sophisticated cognitive abil-

ities (such as mathematics) (Dehaene & Cohen, 2007).

On the other hand, considerable caution may still be warranted. First, it

remains unclear precisely how this process occurs. Other studies have shown
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that training regimes using dot-comparison tasks fail to improve symbolic

math performance (Dewind & Brannon, 2012; Park & Brannon, 2014;

Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006). This raises the distinct

possibility that it is improved manipulation of nonsymbolic magnitudes (in an

explicitly arithmetic context), and not simply increased precision of said

magnitudes, that leads to improvement in symbolic math ability (see also

Park & Brannon, 2014). Such a distinction may have crucial implications

for early education: it may not be enough to simply expose young children

to nonsymbolic magnitudes; rather, the benefits of such exposure may

depend crucially on activities that expressly encourage children to manipu-

late those magnitudes in a mathematical context.

Furthermore, a more detailed look at the correlations between non-

symbolic magnitude processing and math achievement shows that this

effect has proven to be inconsistently replicated (De Smedt, Noël,

Gilmore, & Ansari, 2013). De Smedt et al. (2013) reviewed 25 different

studies (18 with children and 7 with adult participants) and found that only

a minority (7 of 18 with children, 4 of 7 with adults) showed a statistically

significant relation between dot-comparison and symbolic math perfor-

mance.1 This is quite likely due to the fact that the overall size of this effect

is relatively small, as revealed by a recent meta-analysis (with an average r of

about 0.20 for cross-sectional studies and 0.17 for longitudinal studies;

Chen & Li, 2014).

Perhaps most remarkable is the array of studies that have now shown

that this relation is substantially reduced, or even entirely eliminated,

once one controls for basic symbolic number processing abilities (Bartelet,

Vaessen, Blomert, & Ansari, 2014; Brankaer, Ghesquière, & De Smedt,

2014; Castronovo & G€obel, 2012; Fazio, Bailey, Thompson, & Siegler,

2014; Fuhs & McNeil, 2013; G€obel, Watson, Lervåg, & Hulme, 2014;

Holloway & Ansari, 2009; Kolkman, Kroesbergen, & Leseman, 2013;

Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Lyons & Beilock, 2011;

Sasanguie, G€obel, Moll, Smets, & Reynvoet, 2013; Szűcs, Devine,

Soltesz, Nobes, & Gabriel, 2014; Toll & Van Luit, 2014; vanMarle

et al., 2014).

However, due to the highly variegated nature of these studies, it may be

difficult to draw clear conclusions about the intervening role of basic sym-

bolic number processing abilities. Different studies have employed different

1 By contrast, the authors reviewed 17 studies that measured the relation between symbolic number

comparison and symbolic math—13 of which showed a significant effect.

101Foundations of Children's Numerical and Mathematical Skills

Author's personal copy



types of symbolic number tasks (e.g., number comparison, counting, or

number ordering), whichmakes it unclear just which symbolic number skills

are most crucial for underpinning more sophisticated math skills, such as

mental arithmetic. Furthermore, different studies focus on different age

ranges, which may add confusion because different skills may be more rel-

evant at different points in development. Finally, not all studies control for

the same factors—some might control for reading ability, basic processing

speed, executive functioning, some combination thereof, or even none of

these factors.

To address this issue, Lyons et al. (2014) reported data from a single, large

sample spanning six academic grades (1–6, with over 200 children in each

grade), that included eight different numerical tasks, standardized mental

arithmetic ability, as well as three control tasks—all of which were admin-

istered to all children in the sample. The authors were thus able to examine

how a wide range of basic numerical abilities relate to mental arithmetic at

several different time-points in development, all while controlling for non-

numerical factors (reading ability, basic processing speed, executive func-

tioning, as well as within-grade age variation). Highly consistent with the

Chen and Li (2014) meta-analysis, Lyons et al. (2014) showed an average

zero-order correlation between nonsymbolic magnitude processing (i.e.,

dot comparison) and mental arithmetic ability of about r¼0.24, which

was statistically significant in each grade. However, after controlling for

the other seven basic numerical tasks, including several symbolic tasks, these

correlations were all rendered nonsignificant. By contrast, the symbolic

processing tasks remained significant predictors of mental arithmetic ability,

indicating that these symbolic abilities are more directly linked to more

complex math processing than is nonsymbolic magnitude processing. Inter-

estingly, the type of symbolic processing that best predicted arithmetic abil-

ity systematically changed with age: comparing relative symbolic quantities

was more predictive in younger children (grades 1–2), whereas assessing rel-

ative order of symbolic quantities was more predictive in older children

(starting in grade 3 and increasing thereafter through grade 6). Note also that

these results remained significant even after controlling for the fact that the

symbolic and arithmetic tasks are presented in the same visual format (i.e.,

Indo-Arabic numerals; see also Lyons & Beilock, 2011, for a similar result in

adults). This suggests that it is not just symbolic number representation per se

that is crucial for arithmetic, but how these symbols are used—and the critical

symbolic skills may well shift over the course of development. In sum, a

more direct and fruitful approach to understanding the emergence of
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sophisticated arithmetic abilities may be better focused on how children

learn to understand and manipulate number symbols.

A critical outstanding question is how young children first come to

understand the numerical meaning of number symbols. Here, it is again

tempting to assume that symbolic number understanding is bootstrapped

from nonsymbolic magnitudes. However, even in kindergarteners and pre-

schoolers, the current literature remains mixed. For instance, one may con-

trast a list of studies confirming a relation between nonsymbolic and

symbolic number processing in kindergarten or younger children

(Bonny & Lourenco, 2013; Gilmore et al., 2010; Gray & Reeve, 2014;

Libertus et al., 2013; Mazzocco et al., 2011b; Starr et al., 2013) with a similar

list of studies showing either the opposite (Bartelet et al., 2014; Fuhs &

McNeil, 2013; Kolkman et al., 2013; Sasanguie, Defever, Maertens, &

Reynvoet, 2014; Toll & Van Luit, 2014) or that basic symbolic number

processing may provide the crucial intermediary step (vanMarle et al.,

2014). Moreover, Mussolin, Nys, Content, and Leybaert (2014) have even

provided evidence to suggest that developmental influence runs in the

opposite direction—that improvement in symbolic number abilities predicts

later accuracy in nonsymbolic magnitude comparison (see also Gelman &

Gallistel, 2004). Specifically, Mussolin et al. (2014) measured 3–4-year-old

children’s ability to process symbolic and nonsymbolic numbers at two dif-

ferent time-points 7 months apart (41 children successfully completed all

tasks at both time-points). Results showed that symbolic performance at

the first time-point predicted nonsymbolic performance at the second

time-point, but not the other way around. In sum, though it is certainly

tempting to conclude that the cultural acquisition of sophisticated num-

ber–symbol systems operates by co-opting a more evolutionarily ancient

system of nonsymbolic magnitude representation, it remains poorly under-

stood both whether and precisely how this process may occur. It may be that

only a large scale study similar to Lyons et al. (2014), but longitudinal in

design and beginning with children whom have yet to receive any formal

schooling, can adequately lay the issue to rest.

4. THE RELATIONSHIP BETWEEN SYMBOLIC AND
NONSYMBOLIC REPRESENTATIONS OF NUMERICAL
MAGNITUDE

The mixed evidence concerning the association between nonsymbolic

numerical magnitude processing and children’s arithmetic achievement casts
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doubt on the assumption that symbolic number skills are scaffolded on their

nonsymbolic counterparts. Specifically, one influential proposal suggests that

the very meaning of number symbols is determined by direct reference to the

corresponding nonsymbolic magnitude: “When we learn number symbols,

we simply attach their arbitrary shapes to the relevant nonsymbolic quantity

representations” (Dehaene, 2008, p. 552; see also, Dehaene, 1997; Gallistel &

Gelman, 2000). As noted earlier, the appeal of this proposal is straightforward:

the solution to the mystery of how number symbols ground their meaning in

reality is that they are simply linked to their evolutionary precursors—i.e., the

(possibly innate) representation of the corresponding nonsymbolicmagnitude.

Support for this view has been consistently echoed (e.g., Eger et al., 2009;

Feigenson et al., 2004, 2013; Hubbard et al., 2008; Libertus & Brannon,

2009; Lyons & Ansari, 2009; Nieder & Dehaene, 2009; Piazza, Pinel, Le

Bihan, & Dehaene, 2007), and the idea has been given explicit form in the

computational model proposed by Verguts and Fias (2004). To understand

their model, one can imagine different internal nodes, each of which repre-

sents a given number. If a given node shows the greatest degree of activity,

then the model will “respond” with the number thus indicated. Consistent

with the notion of a Gaussian tuning curve along a mental number line (dis-

cussed earlier; see also Figure 3), a nonsymbolic magnitude (such as an array of

dots) will tend to maximally activate the node corresponding to the correct

number of dots (e.g., “six”). Note that the surrounding nodes (“five” and

“seven”) will also be activated—but crucially, on average, activation at these

nodes will be less than at “six.” Continuing the pattern, “four” and “eight”

will be activated, but even less so; and so on. The idea is that the underlying

representation for a given nonsymbolic magnitude is not an exact quantity,

but a probabilistic representation centered on the actual magnitude (this rep-

resentation is thought to drive the numerical distance and ratio effects—see

Section 1). Adding random perturbations to the model causes it to generate

errors that mirror human behavior: The model will most often respond “six”

to six dots, but it will sometimes respond “five” or “seven” and even occa-

sionally “four” or “eight”. For a symbolic input (e.g., “6”), the model simply

draws a direct link to the “six” node. In this way, symbolic representation is

much more precise—both the model and humans make very few errors when

dealing with symbolic inputs. The crucial point, however, is that the central

node for six dots “six” is exactly the same node that “6” points to. It is in this

way that the Verguts and Fiasmodel makes explicit the view that symbolic and

nonsymbolic numerical stimuli point to essentially the same underlying

representation.
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Three lines of evidence are typically cited in support of the proposal that

symbolic and nonsymbolic numerical stimuli draw from the same underly-

ing representations. First, as discussed in the previous section, individual dif-

ferences in nonsymbolic magnitude processing are related to more complex

symbolic math abilities. Second, behavioral and neural signatures such as the

distance and ratio effects (see Figure 2) are qualitatively similar for symbolic

and nonsymbolic numbers (e.g., Buckley &Gillman, 1974; Dehaene, 2008).

Third, neural evidence has pointed to similar substrates in the brain for sym-

bolic and nonsymbolic number processing (Diester & Nieder, 2007, 2010;

Eger et al., 2009; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003;

Piazza et al., 2007; though see Shuman & Kanwisher, 2004, for evidence

to the contrary).

Recently, several counterarguments to this proposal—and to the three

lines of evidence outlined in the preceding paragraph—have emerged. First,

with respect to the relation between individual differences in nonsymbolic

processing and arithmetic, we reviewed several lines of evidence in the pre-

vious section that casts substantial doubt on the reliability, specificity, and

meaning of this relation.

Second, it is worth pointing out that ratio and distance effects are hall-

marks of essentially any discrimination task, and is true for stimuli ranging

from letter comparisons (which letter comes later in the alphabet; Van

Opstal, Gevers, De Moor, & Verguts, 2008), to discriminations along the

most basic of perceptual dimensions (such as odor discrimination inDrosoph-

ila; Parnas, Lin, Huetteroth, & Miesenb€ock, 2013), to discriminations along

relatively abstract, categorical variables (such as distinguishing between spe-

cies of animal figures; Gilbert, Regier, Kay, & Ivry, 2008). Of course, one

would be hard pressed to argue that the common signatures imply that letter

sequences, odor representations in Drosophila, and representations of animal

categories in humans are underlain by a common representation. There is

thus a similar logical impasse (known more commonly as the fallacy of

“reverse inference” in, for example, the neuroimaging literature;

Poldrack, 2006) when attempting to argue that qualitatively similar numer-

ical ratio and distance effects demonstrate a common representation for sym-

bolic numbers and nonsymbolic magnitudes.

Rather than relying on such indirect inference, Lyons, Ansari, and

Beilock (2012) directly examined the behavioral implications of mixing

numbers presented in symbolic and nonsymbolic formats. Specifically, adult

participants were asked to directly compare a symbolic number with a non-

symbolic magnitude (an array of dots presented too quickly to count) and
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determine which represented the greater quantity. If the two visual formats

essentially point to the same underlying representation, then performance

should be little different than when comparing numbers in the same format

(e.g., deciding which of two dot arrays contains more dots). Instead, results

showed a very large cost of switching between formats (in particular, signif-

icantly longer response times). Note that the cost cannot simply be attributed

to switching between two different types of visual stimuli, as no such cost

was seen when switching between two symbolic formats: printed number

words and Arabic numerals. In other words, results showed that integrating

information across symbolic numbers and nonsymbolic magnitudes is much

less efficient than would be expected if the two pointed to the same under-

lying representation. This indicates that symbolic and nonsymbolic numbers

may in fact be represented more differently than had previously been

assumed. It is important to note that this study was conducted with adults,

which leaves open the possibility that young children’s symbolic and non-

symbolic number representations are more closely linked (with the dissoci-

ation emerging slowly over the course of ensuing development). On the

other hand, we noted earlier that the evidence for a link between the

two formats in kindergarteners and preschoolers is mixed, at best. In sum,

symbolic and nonsymbolic numbers are probably less directly associated

with one another than one would expect if the former were bootstrapped

directly from the latter; however, the developmental processes remain only

partially understood at present.

Third, evidence for common neural processing of symbolic and non-

symbolic numbers appears to be far less convincing upon further examina-

tion. Perhaps one of the most influential studies showed cross-format fMRI

adaptation (Piazza et al., 2007). Participants repeatedly saw a number pres-

ented in one format (e.g., the symbolic number “50”); then they saw a num-

ber in the other format (in this example, an array of dots). Sometimes the

number in the new format would be the same magnitude (50 dots) and

sometimes the number would change (e.g., 20 dots). The authors showed

that activity in the parietal cortex was greater when the number changed

than when it did not, indicating some degree of cross-format coding in this

brain area. On the other hand, Cohen Kadosh et al. (2011) subsequently

demonstrated that parietal brain areas are far more sensitive to changes in

format than to changes in number. That is, the brain is perhaps more keenly

tuned to the differences in numerical format than to their similarities.

The logical impasse of reverse inference (mentioned earlier in the con-

text of distance effects) applies to much of the neuroimaging evidence as
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well. In other words, simply showing that two tasks coactivate the same

brain area does not imply that the processing utilized in that area is the same

for both tasks because the same brain area may subserve many different func-

tions depending on the exact pattern of activity seen in that area (see, e.g.,

Anderson, Kinnison, & Pessoa, 2013; Anderson and Penner-Wilger, 2013;

Poldrack, 2006). In response, several papers have looked not at how much a

particular brain area is activated, but instead at the spatial patterns of activity

within a brain region.2 To date, four papers have directly assessed the notion

of common distributed patterns of brain activity across symbolic and non-

symbolic number processing (Bulthé, De Smedt, & Op de Beeck, 2014;

Damarla & Just, 2013; Eger et al., 2009; Lyons et al., in press). Bulthé

et al. (2014) found no evidence at any of the spatial scales they examined

for similar distributed representations across symbolic and nonsymbolic

numbers. They also failed to find evidence that successful classification of

different numbers in one format was capable of generalizing to the other for-

mat. Damarla and Just’s (2013) results echoed those of Bulthé and colleagues.

Lyons et al. (in press) also replicated Bulthé et al.’s central result: no evidence

was found to indicate that the distributed pattern of neural activity for a

given symbolic number—e.g., “6”—is related to the pattern of activity seen

for the same number when presented nonsymbolically—six dots. Further-

more, Lyons et al. (in press) also showed that even the underlying represen-

tation structures—how the patterns of activity for different numbers relate to

one another—are qualitatively different for symbolic and nonsymbolic

numbers. Indeed, only one of the studies (Eger et al., 2009) found positive

evidence indicating that spatial patterns of neural activity for symbolic and

nonsymbolic numbers bear any relation to one another—and even in that

case, decoding was unidirectional and only slightly above chance: 57% accu-

racy, where chance was 50%. Therefore, more fine-grained analysis of the

underlying patterns of neural data provides scant evidence for the idea that

there are similar representations in the brain for symbolic and nonsymbolic

numbers.

This may be partially explained by recent evidence indicating that the

neural overlap seen for symbolic and nonsymbolic numbers depends on task

demands. While number comparison tasks (which of two items is numeri-

cally greater) showed overlap in brain activity in a canonical number region

2 The specific spatial distribution of an activation pattern over multiple units (voxels) is by definition

more specific than the activity of a single node or region. In theory, though the danger of reverse infer-

ence remains to some extent, it should thus be mitigated when considering spatial patterns of activity

because these are less likely to be shared across highly disparate brain functions.
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(the intraparietal sulcus), this was not true for brain activity during symbolic

and nonsymbolic numerical ordering tasks (are items in numerical order;

Lyons & Beilock, 2013). This result calls into question whether neural over-

lap between symbolic and nonsymbolic number processing indicates a fun-

damentally common representation or a more transient effect that is more

reflective of task demands than basic underlying representation.

Thus, recent evidence has begun to erode a strong view of the notion

that the meanings of number symbols are grounded in a direct reference

to their nonsymbolic counterparts. An alternative explanation is that num-

ber symbols are initially linked exclusively via the exact, nonsymbolic quan-

tities within the subitizing range (�4)3—that is, numbers less than or equal

to four may be mapped onto corresponding nonsymbolic magnitudes, but

those outside this range are largely distinct from their nonsymbolic counter-

parts (Carey, 2004).

Le Corre and Carey (2007) provided evidence consistent with the view

that an initial understanding of symbolic numbers is tied to the subitizing

system. A crucial step in the development of numerical understanding occurs

when children grasp the “cardinality principle”—that counting to any num-

ber yields the number in the set, as indexed by the last number said, and that

this principle can be extended, theoretically, to any number. The authors

showed that 3–4-year-old children were able to map number words onto

arrays of objects (essentially name the number of objects) within the sub-

itizing range prior to acquiring an understanding of the cardinality principle.

However, children at this age failed to consistently map corresponding num-

ber words onto sets containing more than four items until several months

after acquiring the cardinality principle. This finding indicates that the ability

to map number symbols (number words in this case) onto nonsymbolic

magnitudes can occur prior to acquiring the cardinality principle, but only

for numbers within the subitizing range. Le Corre and Carey (2007) inter-

preted this as evidence that symbol-magnitude mapping within the sub-

itizing range is a critical precursor to grasping the numerical meanings of

symbolic numbers more generally.

Evidence in adults is consistent with this view: Lyons et al. (2012,

reviewed earlier) showed that the cost of mixing symbolic and nonsymbolic

3 Subitizing refers to rapid, exact apprehension of the number of objects in a set without explicit

counting (Dehaene & Cohen, 1994; Mandler & Shebo, 1982; Trick & Pylyshyn, 1994), is relatively

stable over development (Schleifer & Landerl, 2011), and is limited to a capacity of about three or four

items (a limit that, at least in adults, is related to the general processing capacity limit for visual short-

term memory; Luck & Vogel, 1997; Piazza, Fumarola, Chinello, & Melcher, 2011).
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formats for small numbers (�4) is substantially smaller than that found for

large numbers (>4; Lyons et al., 2012), suggesting that subitizable symbolic

and nonsymbolic numbers may retain a link even into adulthood.

How, then, do number symbols that refer to larger magnitudes—those

beyond the subitizing range—acquire meaning? One idea is that the mean-

ings of larger numbers are bootstrapped from an understanding of smaller

number symbols (Carey, 2004). Just how this occurs remains up for debate

(Ansari, 2008). Some researchers have suggested the grammatical structure

of language plays a central role in understanding the representational struc-

ture of large symbolic numbers (Almoammer et al., 2013; Carey, 2004; Le

Corre & Carey, 2007; Sarnecka, Kamenskaya, Yamana, Ogura, &

Yudovina, 2007; Sullivan & Barner, 2014). Another possibility is that

visuo-spatial processing is most crucial (e.g., Gunderson, Ramirez,

Beilock, & Levine, 2012). In mapping numbers onto a visual-spatial number

line, understanding that the spatial distance between integers remains con-

stant on a linear scale helps children understand that the same is true for

integers—even those that are uncountably large (Siegler & Ramani,

2008). Another, if related, view suggests that understanding magnitudes as

ordered sequences allows us to reason about very large numbers with which

one is unlikely to have much direct perceptual experience (e.g., one million;

Lyons & Beilock, 2009, 2011). Crucially, these factors need not be mutually

exclusive. They each operate from different formulations of a common

assumption: that the meanings of larger number symbols are at best only

loosely tied to their nonsymbolic counterparts (for a view that explicitly dis-

agrees with this assumption; however, see Feigenson et al., 2013). On that

front, a major unanswered question concerns the precise mechanism—

linguistic, spatial, ordinal, nonsymbolic magnitudes, a combination thereof,

or some yet-to-be discovered factor—that links larger number symbols to

one another. As such, this question is now a central driver of research in

the field of numerical cognition.

5. SUMMARY AND CONCLUSIONS

Numbers play a critical role in our everyday lives, and acquiring

numerical and mathematical skills is one of the central goals of formal edu-

cation across the globe. Over the past three decades, researchers from the

fields of Cognitive Science, Psychology, and Neuroscience have investi-

gated how numbers are represented and processed in the brain and mind.

A particular focus of this line of research has been on better understanding
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the foundations upon which the development of numerical and mathemat-

ical skills rest. To do this, researchers have sought to understand how sets of

items (numerical magnitudes) are processed and represented from infancy

onward. A large body of recent evidence has converged to suggest that

humans share with other species the ability to approximately represent

nonsymbolic numerical magnitude (e.g., arrays of dots). This ability has

also been found in very young infants. Furthermore, brain-imaging evi-

dence suggests the involvement of the parietal cortex during numerical

magnitude processing in monkeys, young babies, children, and adults.

In view of the large body of evidence supporting the theory that

there exists both phylogenetic and ontogenetic continuity in the represen-

tation of nonsymbolic numerical magnitude, it has frequently been con-

tended that this representation serves as the basis of acquisition of symbolic

representations of numerical magnitude (e.g., number words and Arabic

numerals) over the course of human development. Theories of the devel-

opment of symbolic number processing (e.g., Dehaene, 2008) as well as

training studies (e.g., Lyons & Ansari, 2009) and computational models

(e.g., Verguts & Fias, 2004) are underpinned by the assumption that sym-

bols, such as number words and digits acquire their meaning (i.e., become

symbolic representations of numerical magnitude) by becoming connected

to the approximate, nonsymbolic representations of numerical magnitude

that can be found across species and can be detected early in human devel-

opment. This theory is certainly compelling and intuitive. However, as

this literature review demonstrates, the empirical studies that have exam-

ined its predictions have not provided robust evidence in support of a

strong link between the nonsymbolic, approximate representation of

numerical magnitude and number symbols. One approach to testing the

predicted connection between nonsymbolic and symbolic representations

of number has been to examine correlations between children’s non-

symbolic number discrimination abilities and their symbolic numerical

and mathematical skills. If nonsymbolic representations of numerical mag-

nitude provide the scaffold upon which more complex, symbolic numer-

ical skills are built, then individual differences in nonsymbolic numerical

magnitude representations should predict variability in children’s formal,

symbolic numerical, and mathematical skills. The data summarized here,

however, do not provide strong support for this prediction. Specifically,

the correlations between nonsymbolic magnitude processing and measures

of arithmetic achievement have been found to be mostly weak and have

not been shown to explain unique variance over and above symbolic
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number processing skills. Some evidence even suggests that improvements

in symbolic number processing precedes improvements in nonsymbolic

processing. In addition to studies that have correlated nonsymbolic

numerical magnitude processing measures with symbolic measures of

numerical and mathematical achievement, researchers have examined

the connection between symbolic and nonsymbolic representations in

experimental studies using both behavioral and brain-imaging methods.

As this review demonstrates, and similar to correlational studies, these

investigations have not provided evidence in support of a strong connec-

tion between symbolic and nonsymbolic, approximate representations of

numerical magnitude. If anything, the bulk of the evidence reviewed here

indicates that the differences between symbolic and nonsymbolic numbers

may well outweigh any similarities between the two formats.

In light of our review of this research, we suggest that the “Symbol-

Grounding Problem” in the field of numerical cognition—that is

how symbols acquire their meaning beyond associations with one

another (Harnad, 1990)—has not been solved. The hypothesis that

this process can be explained through the development of a strong con-

nection between number symbols and the well-documented approximate

system for the representation of numerical magnitude is not supported

by available data from children and adults at both the cognitive and

neural levels of analysis. Therefore, a major challenge for the field of

numerical cognition will be to explore alternative solutions to the

“Symbol-Grounding Problem,” such as the notion that it is through

the connection with exact, nonsymbolic representations of number in

the subitizing range (1–4) that children learn the rules of the number

sequence and that these rules are then generalized to larger numbers

without requiring a direct connection to nonsymbolic representations

of numerical magnitudes. How children acquire and learn to manipulate

symbolic numbers outside this range is currently an active and important

area of research.

A resolution to the “Symbol-Grounding Problem” will not only signif-

icantly improve our understanding of how children acquire sophisticated,

symbolic representations of numerical magnitude that give them the poten-

tial to become the economists, engineers, and scientists of the future, but it

will also have important educational implications. Our understanding of the

processes by which children learn the meaning of number symbols will

inform the best ways in which children will be assisted in this critical learning

process by their teachers and caregivers.
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