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ABSTRACT 

Math and executive functioning (EF) skills are thought to be tightly linked in early childhood. To facilitate 
our understanding of this link in early childhood, here we present a meta-analysis of over 1,000 different 
correlation values between EF and math measures in early childhood (4-6yrs). The overall average EF-
Math relation was r=.350 (95% confidence-interval: .338-.361). We then examined whether the strength 
of the EF-Math relation in this age-range depends on measurement factors, socio-economic status (SES), 
and the nature and direction of longitudinal relations. [1] Overall achievement measures of EF and math 
generally led to higher estimates of the EF-Math relation relative to measures of isolated EF subprocesses 
or specific math skills, though this may be due more to measurement than developmental factors. [2] EF 
measures using numerical stimuli inflate estimates of the EF-Math association by roughly 40%. [3] Low 
SES samples showed the strongest average EF-Math associations. [4] Longitudinal associations that do not 
adjust for time-1 measurement of the outcome variable lead to inflated (as much as 120%) estimates of 
directional associations. After making this adjustment, we found [5a] significant, albeit reduced 
bidirectional relations between EF and math, and [5b] that math is a stronger predictor of future change 
in EF than the reverse. In sum, the results of this work contribute to theoretical models of the interaction 
between EF and math in early childhood, as well as to practical attempts to foster growth in children’s EF 
and math skills, whether in the lab, classroom or living room. 
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INTRODUCTION 

Mathematical thinking and executive functioning (EF) skills are thought to be tightly linked across the early 
childhood years. A large body of research has documented a positive association between EF and math 
achievement (e.g., Bull et al., 2008; Espy et al., 2004; Schmitt et al., 2017).  Additionally, while EF is thought 
to be concurrently linked to a variety of academic skills such as reading, literacy and math (e.g., Best et 
al., 2011; Cameron et al., 2012; Shaul & Schwartz, 2013), its capacity to promote change in such skills 
appears to be the greatest for math (Fuhs et al., 2014; McKinnon & Blair, 2019; Schmitt et al., 2017). There 
is also a small but growing body of evidence that math skills can predict, and perhaps even promote, 
change in EF skills in return (Welsh et al., 2010; Fuhs et al., 2014; McKinnon & Blair, 2019). EF and math 
may thus be part of a positive feedback cycle that could be of particular relevance in early childhood when 
these skills are first forming. 

EF and Math in Early Childhood 

Early childhood is a time when children are first acquiring basic foundations of numerical skills on which 
later math learning will be built. Children who enter kindergarten with better basic math knowledge are 
more likely to succeed across a variety of academic domains including math, reading and science 
(Claessens & Engel, 2013; Duncan et al., 2007; Romano et al., 2010). Similarly, EF skills are undergoing 
rapid development in early childhood. Children who enter kindergarten better able to control or regulate 
their cognition and behavior tend to adapt more easily to the classroom environment (Clark et al., 2002; 
Nesbitt et al., 2015; Neuenschwander et al., 2012), and tend to display stronger academic achievement 
(e.g., Best et al., 2011; Cameron et al., 2012; Shaul & Schwartz, 2013). Furthermore, low-income children 
tend to underperform in terms of both EF and math skills (Hackman & Farrah, 2009; Hair et al., 2015; 
Jordan & Levine, 2009). Research focused on understanding the strength of the EF↔Math relation and 
how it can be leveraged to support the simultaneous development of both skills, can inform intervention 
efforts that aim to close the school readiness gap. 

While there are multiple existing meta-analyses on the relation between EF and math (Friso-van den Bos, 
2013; Peng et al., 2016; Yeniad, 2013), none have yet focused specifically on early childhood. Some studies 
included preschool and kindergarten-aged children in their analyses (Friso-van den Bos, 2013; Yeniad et 
al., 2013; Jacob & Parkinson, 2015), but they did not isolate the EF↔Math relation specifically among 
children in this younger age group. Given the practical and theoretical import of EF and math in early 
childhood (preschool and kindergarten years), a meta-analysis providing a detailed examination of how 
these constructs relate to one another specifically in this age group is warranted. Thus, the current meta-
analysis thus aims to fill this gap. First, we test whether the strength of the EF↔Math relation in early 
childhood depends on how EF and math are measured. Second, we test whether the early-childhood 
EF↔Math relation is stronger or weaker among children of lower vs higher socio-economic status (SES). 
Third, we examine the strength and direction of longitudinal relations between EF and math in early 
childhood.  
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1) Measurement 

Both EF and math are, in truth, shorthand appellations for complex sets of cognitive processes. At a given 
point in development, not all researchers agree on what the most important subskills are in each domain 
. Even for a given subskill, the specific task by which it is measured may vary across research groups. It is 
thus important to systematically examine how variability in measurement may affect the EF↔Math 
relation. While it is important to acknowledge that a complete treatment of all possible measurement 
variations is beyond the scope of a single paper, below we motivate the various measurement categories 
we considered in this paper (see also Table 1, Section 1: ‘Measurement’).  

Measuring EF Skills 

Broadly, EF refers to a set of cognitive processes that, taken together, allow for the volitional control of 
one’s thoughts, emotions and actions in order to identify and obtain goals (Blair, 2016; Zelazo, 2015; 
Zelazo, Blair & Willoughby, 2016). This set of control processes is often categorized into subprocesses, 
such as inhibitory control, working memory, and cognitive flexibility (Baddeley, 1996; Miyake et al, 2000; 
Nguyen & Duncan, 2019). In research examining early childhood, some studies measure one or more of 
these subprocesses separately (Espy et al., 2004; Harvey & Miller, 2017; Nguyen & Duncan, 2019), and 
other studies combine multiple measures into a composite EF measure (Fuhs et al., 2014; McKinnon & 
Blair, 2019; Welsh et al., 2010). Notably, it remains somewhat unclear when exactly in early childhood 
these subprocesses become functionally differentiated, and whether existing measures are capable of 
dissociating them (Garon et al., 2008; Best & Miller, 2010; Nguyen et al., 2019). In a recent meta-analysis 
in preschoolers, Emslander and Scherer (2022) found little evidence for a difference between the 
association between math intelligence and EF when the latter is separated into subcomponents or treated 
as a latent factor. (See also Table 1 of Emslander & Scherer for an excellent summary of prior meta-
analyses examining the association between math and EF across childhood.) At the level of the individual 
study, math and/or EF are often measured using a composite or overall achievement measure. Hence, it 
seems relevant to examine whether associations between EF and math depend on whether a study treats 
EF as a composite measure, or attempts to isolate specific subprocesses of EF.  

Researchers also differ in whether they use lab-based EF tasks [e.g., backward-span tasks, versus what are 
sometimes referred to as ‘naturalistic’ EF tasks, such as standing still (“like a statue”) in the face of 
distractions (Morrison and Grammer, 2016)]. Both types of tasks, lab-based and naturalistic, are used 
frequently in the early childhood literature. Whether they relate differently to math skills remains unclear. 

Each of the EF measures described above relies on an objective measure of performance in specific, 
predefined tasks (aka ‘direct assessment’). Other researchers prefer to use observational measures that 
assess demonstration of EF skills in a potentially broader range of day-to-day activities. Such observational 
measures typically rely on parent or teacher reports (Clark et al., 2010; Fuchs et al., 2010; Swanson et al., 
2014), which some have argued may be more valid assessments of early childhood EF abilities (Morrison 
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& Grammer, 2016; Isquith et al., 2004). Here we test whether the association between EF and math 
depends on whether EF is measured via direct or observational assessment. 

A final consideration with respect to measuring EF is that many early childhood EF measures involve 
numerical stimuli. For instance, one popular task involves encoding a short string of digits (e.g., “7, 3, 2, 
8”) and then repeating the string back after a short delay, either in the same or in the reverse order (e.g., 
Hilbert et al., 2014). One possibility is that the use of numerical stimuli in one’s EF measure may inflate 
the association between EF and math skills – a possibility we test here. 

Measuring Math Skills 

The majority of research in the early childhood years utilizes standardized math assessments that are in 
effect composite scores across a range of (age-appropriate) disparate math skills (e.g., Espy et al., 2004; 
Clark et al., 2010; McKinnon & Blair, 2019). Other research has focused specifically on arithmetic 
calculation and fluency (Rasmussen & Bisanz, 2005). Still others have isolated basic numeracy skills, such 
as counting or comparing which of two numbers is greater (e.g., Harvey & Miller, 2017; LeFevre et al., 
2010; Purpura et al., 2017).  These different types of math assessments vary in complexity and may thus 
invoke EF skills to differing degrees (Fuchs et al., 2010; Jõgi & Kikas, 2016; Friso-van den Bos et al., 2013). 
Hence, here we also test whether the EF↔Math relation depends on the type of math assessments used.   

2) Socioeconomic Status (SES) 

Prior research suggests that low-income preschoolers tend to fall behind their higher-income peers in 
terms of both EF and math skills (Hair et al., 2015; Noble et al., 2007; Reardon, 2011). One possibility is 
that the lags seen among low SES children in EF and math may be linked, in which case one might expect 
the EF↔Math relation in early childhood to depend on SES. In the event of a discovered SES-dependency, 
this might contribute to our understanding of the value of examining this relation in economically-diverse 
samples, as well as to adjusting expectations about the potential for feedback between EF and math skills, 
for instance, in early childhood. We thus test whether the EF↔Math relation is moderated by SES. For a 
summary of SES categories considered here, see Table 1, Section 2 (‘SES’). 

3) Longitudinal Relations between EF and Math 

There is currently a relative lack of evidence regarding the direction of influence between EF and early 
math skills. To date, much of the research on EF↔Math relations has tended to assume – tacitly or 
explicitly – a unidirectional relation whereby early EF primarily predicts gains in math outcomes 
(EF→Math: e.g., Clark et al., 2010; Fitzpatrick & Pagani, 2012; Mulder et al., 2017).  As such, a common 
occurrence in the literature is to collect an assessment of EF at an earlier time point (T1) and an 
assessment of math skills at a later time point (T2). An association between EF and math is then 
interpreted as evidence that EF influences math. However, only a few studies have collected both 
measures at both timepoints. Without doing so, a given study could not control for initial skill levels and 
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so could not accurately estimate the relation between early EF and changes in math skills. It is thus likely 
that studies computing an EF(T1)↔Math(T2) association without controlling for Math(T1) are reporting 
inflated associations (Jacob & Parkson, 2015; Bailey et al., 2018). Also left largely unexamined is the 
possibility of the reverse: that early math predicts changes in EF skills. 

Only somewhat recently have researchers begun to implement repeated measures designs (sometimes 
referred to as cross-lagged longitudinal designs) to better estimate bidirectionality between EF and math 
(Chu et al., 2016; McKinnon & Blair, 2019; Welsh et al., 2010). Overall, this small, but growing, body of 
longitudinal work has converged to suggest that the longitudinal relation between EF and math in early 
childhood may well be bidirectional, with early math abilities predicting change in EF to a similar or even 
greater extent than initial EF abilities predict change in math (Welsh et al., 2010; Fuhs et al., 2014; 
McKinnon & Blair, 2019). To our knowledge, two papers, Jacob and Parkinson (2015) and Nguyen et al. 
(2019), have examined the prevalence and magnitude of longitudinal EF-Math relations across multiple 
studies, specifically in early childhood. When investigating the longitudinal relations between EF and 
math, Jacob and Parkinson relied more on a narrative approach, and did not use a formal meta-analytic 
framework. Nguyen et al. (2019), given their stated theoretical aims, were concerned primarily with 
decomposing (or not) EF subcomponents in their relation to math. Further, given the intervening years 
between 2019 and the present day, we are able to include roughly twice as many relevant studies and 
over 170 individual longitudinal effect-sizes in our meta-analytic dataset. That is not to say these earlier 
papers are not valuable; rather, we believe the current work provides an important update and extension 
of this prior work. In sum, we tested for longitudinal relations between EF and math in early childhood 
after controlling for initial performance, and for evidence of an asymmetry between potential directional 
relations. For a summary of longitudinal comparisons considered here, see Table 1, Section 3 
(‘Longitudinal Relations’).  
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METHODS 

Literature Search  

We identified relevant articles in two ways: first, by conducting an online search of common databases 
(i.e., Google Scholar and PsycInfo) using the following search terms: math; math achievement; math 
performance, numeracy; calculation; arithmetic; problem-solving; executive function/ing; working 
memory; updating; response inhibition; inhibitory control; attention shifting; set shifting; cognitive 
flexibility; domain-general cognition; self-regulation; preschool; early childhood; early childhood 
education; kindergarten. Second, we scanned the reference lists of relevant reviews and previously 
identified studies. The search included papers published prior to August 2023. 

We assessed the relevance of each study from the initial search by scanning titles and abstracts for 
keywords. Studies were deemed relevant if they included any of the key terms listed above. Relevant 
studies were then scanned more thoroughly and included in the meta-analysis if they met the following 
inclusion criteria: (a) reported at least one correlation (r-value) between EF and math; (b) had a sample 
consisting of preschool age children (2-5yrs) and/or kindergarten children (5-6yrs)1; (c) did not focus 
exclusively on children with learning-related disabilities (e.g., dyscalculia). Ninety-five studies contributing 
a total of 1022 effect sizes met these inclusion criteria.   

Coding Procedures  

For a complete summary of the coded categories, as well as the relevant comparisons motivated in the 
Introduction above, see Table 1. All categories were double-coded; there were no discrepancies between 
coders (r=1). 

1) Measurement 

The first aim of the current study was to identify whether the EF↔Math relation in early childhood 
depends on measurement factors – in particular, how EF and Math are measured.  

EF Measurement: EF Subcomponents vs Global Measures 
Here we coded for the task that was administered.  For specific subcomponents, we examined inhibitory 
control, working memory, and cognitive flexibility, as these tend to be the most commonly used 
subcomponents in the literature in this age group (Baddeley, 1996; Miyake et al, 2000; Nguyen & Duncan, 
2019). A task was coded as Inhibitory Control if it involved sustaining attention, inhibiting a predetermined 
response, maintaining regulated behavior (e.g., standing still or waiting patiently) or ignoring distractions 
(23.0% of effect sizes included here – see Table 1a). A task was coded as Working Memory if it involved 

 
1 For longitudinal studies, the age restrictions only applied to age at time 1.  Age at time 2 could fall outside of the 
age range of interest.   
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holding and/or manipulating multiple pieces of information in mind at once (38.1% of effect-sizes).  A task 
was coded as Cognitive Flexibility if it involved shifting attention from one aspect of a problem to another, 
shifting between different strategies, or making comparisons (12.9% of effect-sizes).  We also examined 
two forms of global EF measures. One form is a simple composite, which combines multiple measures of 
EF (typically via simple average or latent factor analysis); 11.7% of effect-sizes were coded as Composite. 
Another form of global EF assessment arises when a given task is expressly designed to rely heavily on 
more than one EF subcomponent; we refer to these as Integrative measures (14.3% of effect-sizes). An 
example is the Head, Shoulders, Knees and Toes (HSKT) task, which prior research suggests should be 
thought of as a broad measure of behavior regulation that requires both Working Memory and Inhibitory 
Control (Ponitz et al., 2008; Ponitz, McClelland, Matthews, Morrison, 2009).  

EF Measurement: Lab-Based vs Naturalistic 
We followed Jacob and Parkinson (2015) in coding for whether the EF measure was lab-based or 
naturalistic.  Lab-Based tasks measure the cognitive processes of EF typically through reaction time or 
accuracy (Morrison & Grammer, 2016).  As can be seen in Table 1a, 80.8% of effect-sizes were coded as 
Lab-Based. Naturalistic tasks (15.6% of effect-sizes) are contextualized assessments of ‘real-world’ or 
classroom-based self-regulatory behaviors related to EF (Morrison & Grammer, 2016).  

EF Measurement: Direct vs Observational 
Direct assessments estimate a child’s EF skills via objective performance on an EF task (91.7% of effect-
sizes, see Table 1a).  Observational measures assess perceived EF abilities via an observer’s (e.g., parent 
or teacher’s) rating of a child’s self-regulatory behavior (6.4% of effect-sizes).   

EF Measurement: Numerical vs Non-Numerical EF Tasks 
We coded for whether EF assessments utilized numerical stimuli (coded as Numerical, 16.6% of effect-
sizes, Table 1a) or used exclusively non-numerical stimuli (coded as Non-Numerical, 83.4% of effect-sizes).   

Math Measurement 
In terms of measuring math skills, we coded for whether researchers employed standardized math 
achievement assessments; these typically comprise a battery of aged-normed tasks that assess general 
math skills across a range of capacities (coded as Achievement, 47.4% of effect-sizes, see Table 1a). Other 
researchers measure math skills in terms of more focused assessments of arithmetic calculation or fluency 
(coded as Arithmetic, 15.8% of effect-sizes). Still other researchers assessed exclusively basic numerical 
abilities, such as comparing which of two numbers is greater, counting, or number-line estimation (coded 
as Basic Numeracy, 36.9% of effect-sizes).    
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Table 1 
 Studies Effect-Sizes 

Grand Total 95 1022 
1) Measurement 

EF: Subcomponents vs Global Measures 
Inhibitory Control 39 235 
Working Memory 50 389 

Cognitive Flexibility 25 132 
Composite 18 120 
Integrative 36 146 
EF: Lab-Based vs Naturalistic 
Lab-Based 74 826 

Naturalistic 40 159 
EF: Direct vs Observational 

Direct 89 937 
Observational 16 65 

EF: Numerical vs Non-numerical Stimuli 
Numerical 32 170 

Non-Numerical 84 852 
Math: Math Domain 

Achievement Test 67 484 
Arithmetic 18 161 

Basic Numeracy 32 377 
2) Socioeconomic Status (SES) 

Low 16 177 
Mid-High 8 58 

Mixed-SES 73 787 
3) Longitudinal Relations 

Cross-Sectional vs Longitudinal 
Cross-Sectional 70 486 

Longitudinal 69 536 
Unadjusted Longitudinal 

EF→Math 66 386 
Math→EF 32 150 

Adjusted Longitudinal 
EF→ΔMath 23 89 
Math→ΔEF 23 87 

Table 1 displays the number of studies and effect sizes for each of 
the coding categories described in the main text.  

2) Socioeconomic Status (SES) 

The second aim of the current study was to test whether the strength of the EF↔Math relation in early 
childhood depends on SES. Here we coded for SES based on how the sample was characterized in a given 
study. For instance, some studies expressly targeted participants with low income-to-need ratio or those 
who attended ECE programs targeted toward low-income children such as Head Start (headstart.gov). We 
were particularly interested in the EF↔Math relation among low SES children, so effect-sizes were coded 
as reflecting Low (17.3% of effect-sizes, see Table 1b) or Mid-High (5.7% of effect-sizes) SES samples. In 
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addition, the majority of studies did not isolate specific SES groups and instead included a diverse sample 
in terms of SES. We coded these as Mixed-SES (77.0% of effect-sizes).   

3) Longitudinal Relations 

The third aim of the current study was to examine longitudinal EF↔Math relations in early childhood.  

Cross-Sectional vs Longitudinal Assessment 
Here, Cross-Sectional means the EF↔Math relation was computed between measures of EF and Math 
that were collected at the same time-point (47.6% of effect-sizes). Longitudinal means the EF↔Math 
relation was computed between measures of EF and Math that were collected at different time-points 
(52.4% of effect-sizes).  

Unadjusted vs Adjusted Longitudinal Relations 
There is often an implied direction when researchers report longitudinal associations. As noted in the 
Introduction, simply relying on when data were collected to infer directionality is highly problematic, as it 
likely overestimates the magnitude of directional effects. More useful are estimates of the extent to which 
a given variable predicts change in another variable. Such estimates require that one adjust the observed 
relation for pre-existing levels of the outcome variable. Practically, this means one needs to measure both 
EF and Math at both time-points. Unfortunately, of the 536 longitudinal effect-sizes, only 176 (32.8%) 
came from studies that measured EF and Math at both time-points. This means the majority of studies 
reporting longitudinal EF↔Math relations failed to control for measurement of the outcome variable at 
the earlier time point, raising the possibility that these associations represent an inflated estimate of the 
extent to which EF predicts change in Math, and vice-versa. We refer to longitudinal associations as 
Unadjusted when they do not control for pre-existing levels of the outcome variable, and we denote them 
here as EF→Math and Math→EF2. Longitudinal associations that do include such controls we refer to as 
Adjusted longitudinal associations, and we denote them here as EF→ΔMath and Math→ΔEF, respectively.  

Meta-Analytic Strategy  

We used Pearson’s r-values to index EF↔Math relations. Because r-values are standardized (expressed 
as relative changes in units of standard-deviation), the standard-error of a given r-value (ser) can be 

calculated, given the sample-size used to estimate that r-value (Nr): 𝑠𝑠𝑠𝑠𝑟𝑟 = 1
�𝑁𝑁𝑟𝑟−3

.   

Meta-analytic values were estimated in SPSS [IBM: version 29.0.1.1 (244)]. Estimated average r-values 
and corresponding confidence-intervals were generated using a random-effects (RFX) model (effect-sizes 
nested within studies), restricted maximum likelihood (REML) estimator, and Knapp-Hartung adjusted 

 
2 Note that the arrows here are not meant to imply causality, but simply to aid in recalling the direction of association 
in measurement time.  
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standard-errors (Langan et al., 2019). We selected RFX models because heterogeneity tests (Q-statistics) 
were highly significant. Weights were computed using fully inverted variance, such that they included 
both within- and between-study variance (Pustejovsky & Tipton, 2021). Specific estimates (e.g., Low vs 
Mid-High vs Mixed SES) were calculated in a similar manner via stratified subgroup analyses (also via RFX 
as specified as above).  

Direct comparisons between pairs of estimated average r-values (e.g., comparing the average EF↔Math 
relation among Low SES samples vs the same among Mid-High SES samples) were computed via random-
effects meta-regression, again using Knapp-Hartung adjusted REML estimates. Note that the number and 
breadth of available studies did not allow for a complete assessment of all combinations of potential sub-
moderators (e.g., comparing Low vs Mid-High SES only for studies using a direct, lab-based, non-
numerical, composite EF measure and a basic numeracy math measure). Hence, we isolated a single 
comparison category (e.g., Low vs Mid-High SES, or Lab-Based vs Naturalistic EF measures) at a time. In 
doing so, we sought to lean on the methodological strength of a meta-analytic approach, which seeks to 
identify broad trends across a range of studies. 

In this regard, comparison categories were yoked to the theoretical questions outlined in the Introduction 
(see also Table 1 for a summary). We believe this approach to be more theoretically informative relative 
to an atheoretical consideration of all possible combinations. In addition, this approach maintains a more 
reasonable sample-size for each comparison, and it reduces the total number of comparisons being 
computed – both factors are important for increasing the generalizability and replicability of the results 
being presented here. Finally, despite our arguably more circumspect approach, we nevertheless tested 
a fair number of direct comparisons; hence, we report both the traditional threshold of p<.05, as well as 
Dunn-Šidák corrected thresholds (Šidák, 1967). 

Computing Adjusted Longitudinal Effects 

To compute an adjusted longitudinal effect, one must control for the outcome variable (EF or Math at 
Time-2) measured at an earlier time-point (EF or Math at Time-1, respectively). Doing so allows one to 
compute the equivalent of sample-adjusted change scores for the outcome. For instance, if one removes 
the linear association between a math measure collected at the end of preschool and that same measure 
collected again at the end of kindergarten, then the resulting residuals are by definition what changed 
across measurement time-points.3  Further, so long as the predictor variable was measured at the same 
time as the first instance of the outcome variable (i.e., EF was measured at the end of preschool in the 

 
3 This is somewhat preferable to using simple difference scores, as a regression-based approach implicitly adjusts 
change scores based on deviations from the group mean at the first time-point, whereas difference scores do not. 
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example above), adjusted effects partially4 account for pre-existing relations between the predictor and 
outcome (between EF and Math). In this way, adjusted effects allow one to estimate the extent to which 
one variable predicts change in another variable. However, in the current context, to do so we are limited 
to studies that collected EF and Math measures at both time-points (i.e., a repeated-measures design), 
and that reported the full matrix of correlations (between EFTime1, EFTime2, MathTime1, MathTIme2). 

For a given study, EF→ΔMath is the partial correlation between EFTime1 and MathTIme2, controlling for 
MathTime1. Most studies do not report these partial correlations. Serendipitously however, because r-
values are standardized covariance estimates, the requisite partial correlations can instead be calculated 
from the zero-order correlation matrix (Opgen-Rhein & Strimmer, 2007). This calculation involves a two-
step, ‘pseudo-inverse’ procedure. In the first step, one inverts the input zero-order correlation matrix, 
which by definition orthogonalizes the resulting matrix elements with respect to the original matrix; in 
this way, the new elements represent covariances that are independent of one another. However, the 
new elements are no longer in standardized units. Hence, the second step of the procedure standardizes 

each element in the usual manner: 𝑟𝑟𝑥𝑥,𝑦𝑦 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦)
�𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥)∙𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)

, where here Cov(x,y) is a given non-diagonal 

element from the first step, and Var(x) and Var(y) are the diagonal elements corresponding to the 
constituent variables x and y. The result is a new matrix in which non-diagonal elements represent partial 
correlations between two variables, controlling for the influence of all other variables in the matrix. As an 
illustration, consider the zero-order correlation matrix with three variables: EF1, Math1, Math2. Entering 
this matrix into the above procedure will result in a partial correlation matrix. More to the point, the 
element of the matrix at the intersection between EF1 and Math2 will have been ‘adjusted’ such that it 
now represents the partial correlation between EF1 and Math2, controlling for Math1. In plainer terms, it 
is the association between EF and change in Math, or EF→ΔMath. We thus used the above procedure to 
compute adjusted longitudinal effects (EF→ΔMath and Math→ΔEF) for each unadjusted longitudinal 
effect (EF→Math and Math→EF) reported in a study with a repeated-measures design. 

Comparing Unadjusted and Adjusted Effects 
To test whether unadjusted effects inflate apparent longitudinal associations, we used meta-regression 
to contrast adjusted and unadjusted effects for a given direction (e.g., EF→Math vs EF→ΔMath). To 
equate adjusted and unadjusted effects as much as possible, when directly comparing the two, we used 
unadjusted values only from studies for which adjusted values were also available. In this way we are 
essentially testing whether, on average, adjusting a given longitudinal effect for the outcome measure at 
time-point 1 significantly reduces that effect. 

 
4 This is only approximately true, and it depends on the extent to which the two measures, together, capture the 
range of ‘third variable’ factors. Because this can never be exhaustive, it is important to keep in mind that, even 
when adjusted, directional longitudinal associations are not evidence of causality (Bailey et al., 2018).  



13 

EF AND MATH IN EARLY CHILDHOOD   

Directionality 
For tests of directionality, we limited analysis to adjusted effects (EF→ΔMath and Math→ΔEF), as only 
adjusted effects capture change in the outcome. First, to test for the presence of significant directional 
effects, we estimated the average effect and confidence-interval for each direction via the meta-analysis 
approach noted above. Second, to test for asymmetrical directional effects, we used meta-regression to 
directly contrast EF→ΔMath and Math→ΔEF.  

Publication Bias 

A Trim-and-Fill evaluation of publication bias indicated minimal evidence of publication bias (Shi & Lin, 
2019). We used Egger’s regression test to determine imputation side (right). Imputation required only 14 
additional effect-sizes (relative to 1022 observed effect-sizes). Trim-and-Fill results indicated a very slight 
underestimate of the overall effect (r=.357 instead of .350). Thus, we make no further adjustments for 
apparent publication bias.  

 

RESULTS 

The overall average effect, based on 1022 effects across 95 studies, was r = .350 (95% CI: .338, .361). This 
indicates a small but highly significant positive association between EF and Math in early childhood. This 
overall average effect is represented with a black dashed line in Figures 1-3. 

1) Measurement 

Average effects for each measurement subcategory are shown in Figure 1. Exact values for reference 
purposes can be found in Appendix A (Table A-1). Contrast results are given in Table 2. We conducted 16 
measurement-related contrasts (Table 2), so the corrected threshold for this section was α<.0032. 

Measuring EF Skills 

We first examined how the average observed EF↔Math relation in early childhood varies as a function 
of how EF is measured – as individual EF subprocesses, composite EF measures, or integrative EF 
measures. Average effects are shown in orange in Figure 1. In terms of individual EF subprocesses, the 
average effects for Working Memory (r=.352) and Cognitive Flexibility (r=.327) were similar to the overall 
average effect, and did not significantly differ from one another (p=.120: see Table 2 for full contrast 
details). Inhibitory Control, by contrast, showed an average effect (r=.276) significantly lower than either 
Working Memory (p<.001) or Cognitive Flexibility (p=.008, though note this latter effect does not pass the 
more stringent corrected threshold). Examining measures that combine multiple subprocesses, 
Composite measures yielded a significantly higher average association (r=.515) relative to Integrative 
measures (p<.001), or any of the individual subprocesses or integrative measures, even after correcting 
for multiple comparisons (all ps<.001). Conversely, Integrative EF measures showed an average effect 



14 

EF AND MATH IN EARLY CHILDHOOD   

(r=.338) similar to the overall mean effect. As such, Integrative measures did not differ significantly from 
Working Memory or Cognitive Flexibility measures (ps≥.444), but were significantly higher than Inhibitory 
Control measures (p<.002).  

We next compared EF↔Math relations for Lab-Based vs Naturalistic EF measures (green bars in Figure 
1). Both types of measures showed similar effects (Lab-Based: r=.347; Naturalistic: r=.328) to the overall 
average effect, and they did not significantly differ from one another (p=.244). 

For EF↔Math relations using Direct vs Observational EF measures (purple bars in Figure 1), we found 
that Direct measures showed an effect (r=.347) similar to the overall average, though this is perhaps 
unsurprising as Direct measures comprised over 90% of the total effects included in the dataset. That said, 
the 65 Observational effects included in the dataset showed an average association with Math (r=.285) 
that was notably lower than the overall average (Figure 1), and significantly lower than that seen for Direct 
measures (p=.009). Caution is warranted, however, as this latter contrast effect did not pass the more 
conservative correct threshold.  

We next compared EF↔Math relations for EF measures that utilize Numerical vs Non-numerical stimuli 
(red bars in Figure 1). Numerical EF measures yielded an average association with Math (r=.459) 
substantially higher than the overall average effect, whereas Non-numerical measures yielded an average 
effect (r=.327) more in keeping with the overall average. Further, the difference between Numerical and 
Non-numerical effects was highly significant (p<.001). 

Measuring Math Skills 

When considering the impact of different types of math measures on the EF↔Math relation in early 
childhood (blue bars in Figure 1), we observed the highest average relation for math Achievement 
measures (r=.396), which was significantly higher (ps<.001; see Table 2 for complete contrast statistics) 
than those observed for Arithmetic (r=.246) or Basic Numeracy (r=.327). The lowest relation was seen for 
Arithmetic, which was significantly lower than Basic Numeracy as well (p<.001).  
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Table 2 
Contrast Δ lower upper t df p d 

EF: Subcomponents vs Global Measures 
Composite > Inhibitory Control .238 .198 .279 11.53 353 2.6E-26 1.23 
Composite > Working Memory .162 .129 .195 9.55 507 5.3E-20 0.85 

Composite > Cognitive Flexibility .190 .157 .222 11.49 250 8.4E-25 1.45 
Integrative > Inhibitory Control .063 .024 .103 3.13 379 .002 0.32 
Integrative > Working Memory -.013 -.046 .020 -0.77 533 .444 -0.07 

Integrative > Cognitive Flexibility .011 -.022 .045 0.67 276 .505 0.08 
Composite > Integrative .176 .140 .213 9.43 264 2.2E-18 1.16 

Inhibitory Control > Working Memory -.077 -.108 -.046 -4.86 622 1.5E-06 -0.39 
Inhibitory Control > Cognitive Flexibility -.053 -.091 -.014 -2.68 365 .008 -0.28 
Working Memory > Cognitive Flexibility .026 -.006 .058 1.57 519 .116 0.14 

EF: Lab-Based vs Naturalistic Measures 
Lab-Based > Naturalistic .018 -.013 .049 1.16 983 .244 0.07 

EF: Direct vs Observational Measures 
Direct > Observational .061 .015 .106 2.61 976 .009 0.17 

EF: Numerical vs Non-numerical Stimuli 
Numerical > Non-Numerical .129 .100 .159 8.72 1020 1.1E-17 0.55 

Math: Math Domain 
Achievement > Arithmetic .148 .117 .180 9.22 643 4.1E-19 0.73 

Achievement > Basic Numeracy .069 .045 .094 5.49 859 6.5E-08 0.37 
Arithmetic > Basic Numeracy -.079 -.113 -.045 -4.55 536 6.5E-06 -0.39 

Table 2 shows contrast effects comparing average EF↔Math relations when using different methods for 
measuring EF and Math. Mean differences (Δ) are expressed as the difference between average correlation 
estimates for the two measurement types. Lower and upper refer to 95% confidence intervals. 
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Figure 1 

 
Figure 1 shows average effects for each subcategory in the Measurement section. The black dashed line is the 
overall average effect (r=.350). Error-bars are 95% confidence-intervals. Note that ‘Achievement’ refers to 
math achievement. 
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2) SES 

Here we examined the effect of SES sample composition on EF↔Math relations. Average effects for each 
SES subcategory are shown in Figure 2. Exact values for reference purposes can be found in Appendix A 
(Table A-2). Contrast results are given in Table 3. We conducted 3 SES-related contrasts (Table 3), so the 
corrected threshold for this section was α<.0170. 

The highest average effect was observed for Low SES samples (r=.431), which was significantly higher 
(ps<.001) than those observed for either Mid-High SES (r=.317) or Mixed SES (r=.336). There was no 
significant difference between Mid-High and Mixed SES (p=.292). 

Table 3 
Contrast Δ lower upper t df P d 

Socioeconomic Status (SES) 
Low SES > Mid-High SES .115 .048 .183 3.37 233 8.8E-04 0.44 

Low SES > Mixed SES .099 .068 .130 6.32 962 4.0E-10 0.41 
Mid-High SES > Mixed SES -.027 -.076 .023 -1.05 843 .292 -0.07 

Table 3 shows contrast effects comparing average EF↔Math relations across samples of differing SES 
composition. Mean differences (Δ) are expressed as the difference between average correlation estimates for 
the two measurement types. Lower and upper refer to 95% confidence intervals.  

 

Figure 2 

 
Figure 2 shows average effects for each subcategory in the SES section. The black dashed 
line is the overall average effect (r=.350). Error-bars are 95% confidence-intervals. 
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3) Longitudinal Effects 

Average effects for each measurement subcategory are shown in Figure 3. Exact values for reference 
purposes can be found in Appendix A (Table A-3). Contrast results are given in Table 4. We conducted 4 
contrasts comparing two longitudinal effects, so the corrected threshold for this section was α<.0127. 

Cross-Sectional vs Longitudinal Effects 

Here, cross-sectional effects are those where the EF and math measure were collected at the same time-
point; longitudinal effects are those where the two measures were collected at different time-points (light 
pink bars in Figure 3). Note that for this analysis, longitudinal effects were averaged across temporal 
direction and considered all unadjusted effects (EF→Math and Math→EF), regardless of whether adjusted 
versions of those effects could be computed. Overall, Cross-Sectional effects (r=.367) were slightly higher 
than Longitudinal effects (r=.336). This difference was relatively small, and though significant (p=.007, 
d=0.17).  

Unadjusted vs Adjusted Longitudinal Effects 

Here, we tested whether adjusting longitudinal effects so that they reflect predictions of change in the 
outcome variable significantly alters one’s estimate of the relation between the two variables over time. 
To equate adjusted and unadjusted effects as much as possible, when directly comparing the two, for this 
analysis we included unadjusted values only from studies for which adjusted values could also be 
computed. We computed unadjusted vs adjusted effects for each direction separately. When considering 
effects where EF predicted later math performance, we found that Unadjusted effects (EF→M: r=.419; 
upper medium pink bar in Figure 3) were significantly higher than Adjusted effects (EF→ΔM: r=.190; upper 
dark pink bar in Figure 3): p<.001, d=1.41). Similarly, when considering effects where math predicted later 
EF performance, we found that Unadjusted effects (M→EF: r=.420; lower medium pink bar in Figure 3) 
were significantly higher than Adjusted effects (EF→ΔM: r=.240; lower darker pink bar in Figure 3): p<.001, 
d=2.18. 

Directional Effects 

We first established the presence of significant directional effects – namely, whether adjusted effects for 
each direction (EF→ΔMath and Math→ΔEF; dark pink bars in Figure 3) were significantly greater than 
zero. They were: EF→ΔMath: r=.190 (CI95: .159-.220); Math→ΔEF: r=.240 (CI95: .216-.264); ps<.001. Next, 
to test for directional asymmetry, we directly contrasted EF→ΔMath and Math→ΔEF adjusted effects. We 
found significant evidence for a stronger relation from Math to change in EF than the reverse (p=.010), 
though it is important to note that this equated to at best a moderate effect-size (d=-0.39).  
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Table 4 
Contrast Δ lower upper t df p d 

Cross-Sectional vs Longitudinal Effects 
Cross-Sectional > Longitudinal 0.032 0.009 0.055 2.70 1020 .007 0.17 

Unadjusted vs Adjusted Longitudinal Effects 
EF→M > EF→ΔM 0.230 0.182 0.279 9.34 176 4.3E-17 1.41 
M→EF > M→ΔEF 0.180 0.139 0.221 8.65 172 3.5E-15 1.32 

Directional Effects 
EF→ΔM > M→ΔEF -0.050 -0.089 -0.012 -2.59 174 .010 -0.39 

EF→ΔM > 0 0.190 0.159 0.220 12.44 88 4.4E-21 1.33 
M→ΔEF > 0 0.240 0.216 0.264 20.23 86 1.9E-34 2.18 

Table 4 shows contrast effects comparing longitudinal effects. Mean differences (Δ) are expressed as the 
difference between average correlation estimates for the two measurement types. Lower and upper refer to 
95% confidence intervals.  

 

Figure 3 

 
Figure 3 shows average effects for different longitudinal effects. The black dashed 
line is the overall average effect (r=.350) Error-bars are 95% confidence-intervals. 
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DISCUSSION 

EF and math are both strong indicators of school readiness and appear to be tightly linked over the course 
of early childhood (e.g., Bull et al., 2008; Fuhs et al., 2014; Purpura et al., 2017).  Numerous studies have 
examined the EF↔Math relation, and there are several meta-analyses establishing that this relation is 
statistically robust (Peng et al., 2016; Yeniad, 2013; Cortés Pascual et al., 2019). More recently, there has 
been increasing attention paid to the possibility that the EF↔Math relation might be leveraged to boost 
school readiness skills and ensure that all students enter kindergarten equipped with the skills necessary 
to succeed. However, there is as of yet no comprehensive meta-analysis to our knowledge that has 
examined the EF↔Math relation specifically in early childhood. The current study aimed to fill this gap. 
Further, we sought to probe three critical aspects of the (meta-analytic average) EF↔Math relation in 
early childhood: (1) whether this relation depends on how EF and Math are measured, (2) whether this 
relation depends on the SES of the children in the study, and (3) the direction of longitudinal relations 
between EF and Math. 

We found that the average EF↔Math correlation in early childhood was r=.350. This result is highly 
consistent with the average relation of r=.34 between EF and math intelligence in preschoolers reported 
by Emslander & Scherer (2022). (1) In terms of measurement, we found that composite EF measures 
yielded significantly higher EF↔Math associations than integrative EF measures or any individual EF 
subprocess measured separately. Other EF measures yielded comparable associations with math, except 
for Inhibitory Control, which yielded a significantly lower association than did Working Memory or 
Cognitive Flexibility. Naturalistic and Lab-Based measures of EF yielded similar EF↔Math associations, 
and the association was marginally stronger for direct vs observational measures of EF. EF assessments 
that involve numerical stimuli led to substantially higher associations with math than EF measures that 
did not. In terms of math measurement, the strongest EF↔Math relations were found when using math 
achievement tests, followed by measures of basic numeracy skills, and then measures of arithmetic ability. 
(2) In terms of SES, the highest EF↔Math associations were found in samples comprising low SES 
children. (3) With respect to longitudinal associations, we found that associations that fail to adjust for 
time-1 performance (and hence effectively fail to predict change scores) are substantially inflated relative 
to associations that do adjust for time-1 performance. Adjusted associations nevertheless revealed 
significant associations in both the EF→∆Math and Math→∆EF directions. Interestingly, the average 
adjusted Math→∆EF effect was significantly stronger than the average adjusted EF→∆Math effect. 

1) EF and Math Measurement 

How one measures various constructs can have a substantial impact on the correlations one observes 
between those constructs. When considering the correlation between EF and math in early childhood, we 
found that all operationalizations of EF and math considered here yielded a significant average correlation. 
This speaks to the overall robustness of this relation, even in relatively young children, for whom 
measurement can sometimes prove challenging. On the other hand, we also found that the strength of 
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the association did vary significantly with some – though not all – choices with respect to how EF and 
math were measured.  

Composite vs Integrative EF Skills 

As noted in the introduction, substantial effort has been made to unpack EF into constituent subprocesses, 
such as working memory, inhibition, and cognitive flexibility (Miyake et al, 2000; Lan et al., 2011; Nguyen 
& Duncan, 2019). However, similar to Nguyen et al. (2019), we found the strongest EF↔Math association 
in studies using composite EF measures (r=.515, CI95: .489-.541) – namely, those that combine multiple EF 
measures into a single average or latent variable. What remains unclear is whether this result is due 
primarily to measurement or developmental reasons, and indeed Nguyen et al. (2019) remain notably 
agnostic on this front. From a measurement perspective, it may simply be the case that combining 
multiple measures of partially overlapping constructs leads to a reduction in measurement error. In turn, 
this reduced error produces a more robust estimate of the strength of that construct’s (latent EF’s) 
association with another construct (math). From a theoretical perspective, it may be the case that the 
underlying neurocognitive mechanisms that subserve disparate EF subprocesses are largely 
undifferentiated at this stage in development (Garon et al., 2008; Wiebe, Espy, & Charak, 2008; Wiebe et 
al., 2011). Our data may shed light on this distinction.  

From a theoretical perspective, Integrative EF measures combine multiple aspects of EF within a single 
task. Hence, if the main reason that we see stronger average EF↔Math associations for Composite EF 
measures is that they also combine multiple aspects of EF, then the EF↔Math association seen for 
Integrative EF measures should be similar to that observed for Composite EF measures. It was not. The 
average Integrative effect was r=.338 (CI95: .312-.365], and the average Composite effect was r=.515 (CI95: 
.489-.541) (see Figure 1; Table A-1). An alternative view would be to take a measurement perspective: 
Integrative measures are typically drawn from a single measurement per child (at a given time point), and 
not the average or composite of multiple EF measures at that time point. Most measures of individual EF 
subprocesses also rely on a single measurement (per child per time point). Hence, in this regard, the 
average EF↔Math association for Integrative measures should be similar to the average EF↔Math 
association for individual EF subprocesses. This was primarily what we found: Integrative measures 
yielded average effects no different from those seen for Working Memory or Cognitive Flexibility 
measures (ps>.426, Table 2, Figure 1, orange). The lone exception was a higher effect for Integrative 
relative to Inhibitory Control measures, but this was also true when contrasting Working Memory and 
Cognitive Flexibility measures against Inhibitory Control measures. Furthermore, in a measurement-based 
interpretation of our and Nguyen et al.’s (2019) results, one would expect Composite EF measures to yield 
greater EF↔Math associations than Integrative EF measures (because, again, the former comprises 
multiple, combined measurement points, whereas the latter comprises a single measurement point). This 
is again precisely what we found (Composite > Integrative: p<.001, d=1.16, Table 2). In sum, our data are 
more consistent with the view that the increased EF↔Math associations seen for Composite EF measures 
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tell us little about the underlying neurocognitive structure of EF subprocesses and how they relate to math 
processing at this stage of development; instead, they are more likely the result of measurement factors. 
Consistent with this view, in their recent meta-analysis, Emslander and Scherer (2022) also found little 
meaningful evidence for differences in the associations between math intelligence scores and EF 
subcomponents (inhibition, shifting and updating in their case) among preschoolers.  

Numerical EF Measures 

A popular measure of EF in early childhood is the (backward) digit span task, perhaps due to its ease of 
administration and simplicity of interpretation. However, digits are numerical stimuli, which may 
inadvertently increase the observed correlation with numerical tasks, especially at an age where there is 
still considerable individual variability in basic numeracy skills (e.g., Siegler et al., 2011; Lyons et al., 2014). 
Our data indicate that Numerical measures of EF indeed produce a significantly higher average association 
with math than Non-numerical measures of EF (p<.001, d=.55; Table 2). Whether or not the higher 
association for Numerical EF tasks is inflationary is perhaps a matter of perspective. From a theoretical 
point of view, using a Numerical EF task may be problematic because it muddies the waters, making it 
unclear whether domain-specific or domain-general factors account for the observed correlation. On a 
practical level, it is worth noting that the EF↔Math relation for Non-numerical EF measures was more 
similar to the overall average (r=.350) than Numerical EF measures (r=.459). Hence, our conclusion is that 
Numerical measures indeed inflate the apparent association with math – by our estimates, by over 40%. 
We thus suggest researchers avoid such stimuli in their EF tasks in cases where a key goal of the study is 
to relate said EF tasks to math skills. For example, in the case of the popular digit-span task, a simple 
alternative would be to use consonant letters instead of digits, perhaps taking care to avoid common 
acronyms. Note that an important caveat to this point is that one may take the view that there exists a 
domain-specific aspect of EF dedicated to numerical or mathematical processing (Wilkey, 2023). In that 
view, a Numerical EF measure may be more optimal. However, if one’s intent is to identify how more 
domain-general aspects of EF relate to numerical or math processing, then a Non-Numerical EF measure 
may be better suited. 

Another possibility is that the inflationary conclusion above is not valid because it is biased. For instance, 
it was discussed above that Direct measures of EF possess stronger relationships with math ability than 
their Observational counterparts; given this reality, if Numerical EF measures happen to also be 
disproportionately Direct, this overlap may account for Numericity’s apparent inflationary effects. 
Unfortunately, an exhaustive treatment comparing Numerical vs Non-Numerical EF measures within each 
of the remaining subcategories is not possible due to insufficient data (e.g., there were only 2 effect-sizes 
where the EF task was coded as both Numerical and Inhibitory Control). However, we were able to 
compare Numerical vs Non-Numerical effects within the WM, Lab-Based and Direct categories. In all three 
cases, the results were similar: using a Numerical (relative to a Non-Numerical) version of a WM, Lab-
Based or Direct measure of EF inflated the EF↔Math association by 50%, 49% and 33%, respectively. 
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While a fully exhaustive treatment of all possible factors was not possible here, the results support an 
inflationary view. We thus reiterate our recommendation that researchers avoid using numerical EF 
measures when estimating the association between Math and EF, unless they have an explicit theoretical 
reason for isolating a math-specific aspect of EF (as suggested by Wilkey, 2023).  

Math Measures 

The EF↔Math correlation was significantly greater than 0 for all types of math measures, even relatively 
basic skills like Basic Numeracy and Arithmetic. This consistency speaks to the breadth and robustness of 
the relationship between EF and math. That said, the EF↔Math relation was strongest for math 
Achievement measures, relative to Arithmetic or Basic Numeracy measures (ps<.001). One explanation is 
developmental. Namely, Achievement measures often take the form of standardized tests that include a 
range of different math problems ostensibly tapping different types of math skills. These Achievement 
measures may thus include math items that require more complex problem solving, which rely more 
heavily on EF, in turn increasing the association with EF measures (Friso-van den Bos et al., 2013; Fuchs et 
al., 2010; Jogi & Kikas, 2016). An alternative explanation is that stronger EF↔Math associations for Math 
Achievement primarily reflect measurement as opposed to developmental factors. Standardized 
Achievement tests are essentially composite measures, aggregating performance across multiple, 
interrelated math sub-skills. As we saw with EF, Composite measures, due to superior measurement 
qualities, tend to yield more robust estimates and hence stronger associations with other variables. 
Consistent with this notion, the effect for Achievement measures (r=.396, CI95: .381-.411) was greater 
than the overall mean effect (r=.350). In this respect, the results seen for math measures are similar to 
what we saw for EF measures: At this early stage of math education, a more reliable measurement 
approach may be to combine measures of math to generate a robust estimate of overall math ability.  

2) SES 

In terms of SES, Mixed-SES samples, which contributed 77% of the effects included here, yielded an 
average effect (r=.336, CI95: .324-.348) close to the overall average (r=.350). However, examining the 
subset of samples that isolated specific portions of the SES distribution revealed this average effect 
camouflages important SES-related differences in the EF↔Math relation. In particular, the relation was 
significantly stronger for samples comprised exclusively of low-income children (r=.431, CI95: .398-.464) 
and the weakest for those without such children (i.e., consisting of a primarily middle-to-high income 
samples: r=.317, CI95: .255-.378). One interpretation is that low-income children may rely upon their EF 
skills when performing math to a greater extent than their higher-income peers. This finding could be a 
reflection of differential access to resources that support math learning in the home. For instance, high-
income parents tend to engage in more math talk with their children compared to lower-income parents 
(Vandermaas-Peeler et al., 2009), which, in turn, is associated with stronger early math skills (Susperreguy, 
2013; Susperreguy & Davis-Kean, 2016).  As such, EF may play less of a role in the math performance of 
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high-income children as they are more likely to receive additional supports for early math learning in the 
home. However, this is just a hypothesis and more empirical work is needed to further understand the 
moderating role of SES on the relation between EF and math in early childhood.   

The stronger EF↔Math relation for low-SES children may also have implications for school-readiness.  
Specifically, low-income children demonstrate poorer early math knowledge than their higher-income 
peers, and the gaps in this knowledge at school-entry are thought to be mediated by income-based 
discrepancies in EF (Dilworth-Bart, 2012; Fitzpatrick et al., 2014; Lawson & Farah, 2017). Further, gains in 
low-income preschoolers’ early math skills are predictive of improved EF capacities upon kindergarten 
entry (McCoy et al., 2019). The current meta-analysis is the first to directly contrast the magnitude of the 
EF↔Math relation in early childhood across the SES spectrum. In doing so, we find support for the claim 
that fostering math and EF skills in early childhood education can be mutually beneficial. Moreover, efforts 
to integrate EF and math in early childhood education may yield the greatest benefits in schools serving 
children from low-income families, where perhaps not coincidentally, children often lag the furthest 
behind their peers in both types of skills. A more nuanced understanding of how the relation between EF 
and math differs as a function of SES can help to inform targeted interventions designed to improve school 
readiness skills among low-income children specifically, though more work is certainly needed to further 
test this idea.   

3) Longitudinal Associations 

The current paper sought to systematically document the evidence for (or against) directional relations 
between EF and math within a formal meta-analytic framework. ‘Directional’ here refers not to causality, 
but to capacity to predict change (see below for a more detailed note on causality). Overall, we observed 
that the average adjusted longitudinal relation from EF to math is less than half the size of the average 
unadjusted longitudinal relation between EF and subsequent math performance (EF→ΔM: r=.190, EF→M: 
r=.419, respectively; see Table A-3), suggesting that unadjusted relations are inflated by about 120%. A 
similar pattern was seen for longitudinal relations between math and subsequent EF skills (M→ΔEF: 
r=.240, M→EF: r=.420; see Table A-3), suggesting an inflation factor of about 75%. Together, these results 
indicate that failing to adjust longitudinal effects between EF and math leads to substantially inflated 
estimates of the extent to which these effects are truly directional – that is, the extent to which a given 
variable predicts change in the outcome.  

On the other hand, we found that, even after adjusting these effects for initial performance, we 
nevertheless found significant effects in both directions (ps<.001, ds>1; see bottom two rows of Table 4, 
and dark pink bars in Figure 3). Together, these results support the notion that the relationship between 
EF and math is bidirectional (Clements et al., 2016). More broadly, our results support a view wherein 
both EF and math skills are dynamic, and the relationship between them is transactional (Miller-Cotto & 
Byrnes, 2020). That said, while average adjusted longitudinal effects were robustly positive, these average 
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effects were relatively modest in magnitude. In terms of longitudinal effects in the literature, this means 
we would expect some portion of studies to find null or inconsistent results (e.g., Barnes et al., 2016). 
Further, we would expect only reasonably well-powered studies (i.e., sample-sizes on the hundreds or 
more) to be capable of detecting effects of the magnitude found here (e.g., Zhang et al., 2023), but even 
with this power detection is not a foregone conclusion (Willoughby et al., 2019). With these points in 
mind, our results may thus help to contextualize some of the apparently inconsistent findings in the 
literature: null results, especially in smaller samples, are not entirely unexpected, and while unadjusted 
effects are likely to overstate true underlying longitudinal relations, we should nevertheless expect the 
average (adjusted) effect to be positive in both directions.  

Another point worth emphasizing is that the directional relation from math to change in EF skills was just 
as strong, if not modestly stronger (p=.010, d=0.39), than the generally more celebrated relation from EF 
to change in math skills. Specifically, many researchers describe EF as a set of skills that are foundational 
to the acquisition of math knowledge (e.g., Cragg & Gilmore, 2014; Passolunghi & Lanfranchi, 2011; 
Nguyen et al., 2019).  However, findings from the current study suggest that rather than thinking about 
EF primarily as a precursor to math learning, we would do well to think about EF and math as 
complementary skills that each play a role in the development of the other. Reciprocity in the relation 
between EF and math may be a product of the fact that complex math problems require the integration 
of multiple EF skills. Moreover, acquiring math skills is a complex process requiring one to marshal multiple 
existing cognitive and neural subsystems to think about and manipulate the world in novel ways – a task 
that EF skills are uniquely suited to facilitate. Conversely, if one sees EF not as fixed but malleable given 
experience and input (Miller-Cotto & Byrnes, 2020), then learning math is in many ways an ideal context 
within which to practice and refine the efficient deployment of EF skills (Clements et al., 2016; Miller-
Cotto & Byrnes, 2020).  

On a more applied level, the fact that the longitudinal relation between EF and math, once adjusted for 
baseline performance, is weaker than what is commonly reported in the literature suggests that 
interventions designed to improve early math skills that focus exclusively on EF training may yield at best 
modest results. Indeed, this appears to be the case in several extant studies (Barnes et al., 2016; Fuchs et 
al., 2022; though see also DePascale et al., 2024). Our data indicate that a more accurate view of the 
developmental relation between EF and math is a bidirectional one, implying that math skills are just as – 
if not slightly more – predictive of EF development as EF skills are for math development. Based on this, 
we suggest that efforts to improve both math and EF performance prior to formal schooling should focus 
on how math activities can be leveraged to include more explicit EF support (Barnes, 2023; Clements et 
al., 2016; Miller-Cotto & Byrnes, 2020; DePascale et al., 2024). 
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Limitations 

One important limitation of the current work is that, given the relative scarcity of studies assessing the 
relation between EF and changes in math (and vice versa), we were unable to look at moderators of the 
bidirectional longitudinal relations between EF and math. For instance, longitudinal links, and their 
potential implications for interventions in particular, may depend on overlap between the specific 
subprocesses. Such subprocesses may include the EF subcomponents examined here, or they may involve 
other cognitive domains relevant for both EF and math, such as spatial thinking. 

In another vein, it would be informative to know if the reciprocity in the relation between EF and math is 
specific to preschool-aged children. Current research on the topic has reported inconsistent results in 
terms of whether this reciprocity persists as children get older.  For example, Schmitt et al., (2017) found 
evidence for a bi-directional relation between EF and math in preschool but not in kindergarten. The 
authors observed that once children started formal schooling, EF predicted gains in math but not the other 
way around. However, a more recent study observed bi-directional relations between EF and math across 
kindergarten and into first grade (McKinnon & Blair, 2019). Understanding how reciprocity in the relation 
between EF and math may change with age is important for informing theories on the developmental 
progression of EF and its relation to math. Further, it may also be important for understanding how best 
to design developmentally-appropriate curricula and interventions aimed at improving EF and math skills. 
As such, future research should investigate how the bidirectional relations between EF and math may 
change after the onset of formal schooling.   

A Note about Causality 

With respect to longitudinal associations – even for adjusted relations in which one predicts change in the 
outcome variable – it is important to note that ‘directional’ does not mean ‘causal’; it means ‘predictive 
of change in a given direction’ (Bailey et al., 2018). To draw an analogy, the amount of snowfall on Monday 
night predicts the change in student absences from Monday to Tuesday. Knowing the overnight snowfall 
is thus extremely useful. Further, it is directionally specific: we would not want to confuse the above with 
saying that student absences on Monday predict the change in snowfall from Monday to Tuesday. 
Nevertheless, we would also be careful to stop short of saying that the overnight snowfall directly caused 
Tuesday’s absences. This is because there are a large number of potential intervening factors that our 
simple analysis cannot account for, especially at the individual student level. As such, while the methods 
applied here bring us a step closer to causality in terms of understanding directionally specific 
contributions of EF and math to the development of one another, more work is needed to further 
delineate the causal relations between these two skills. Even with directional (adjusted) longitudinal 
associations, one cannot rule out the possibility that there is a third omitted variable operating on both 
the predictor and the outcome (Bailey et al., 2018).  The most rigorous assessment of the causal relation 
between EF and math would entail a randomized controlled trial (RCT). Unfortunately, as noted in Jacob 
and Parkinson (2015), there are few, if any, RCT studies that have been designed specifically to answer 
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this question. To conclude, one might best summarize the longitudinal results from the present work in 
the form of predictions about what future RCT studies are most likely to find: Based on our results, we 
predict (1) an RCT that manipulates EF training in early childhood is likely to find a small but significant 
transfer to math; (2) an RCT that manipulates math training in early childhood is likely to find a small but 
significant transfer to EF; (3) The transfer effect from math training to EF is likely to be modestly larger 
than the reverse. Other researchers may disagree with these predictions or find them incomplete, but 
that is precisely why one would need more work on the topic. In sum, the current work is not proof of 
causality; instead, it makes evidence-based predictions about the likely outcome of experiments that do 
have the capacity to establish causality. 

Conclusions 

The present meta-analysis examined whether the strength of the EF-Math relation in preschool and 
kindergarten depends on EF and math measurement factors, socio-economic status (SES), and the nature 
and direction of longitudinal relations. Several results of note emerged. [1] Composite and Achievement 
measures of EF and Math led to higher average estimates of the EF-Math relation relative to measures 
that attempt to isolate EF subprocess or specific math skills; however, more work may be needed to 
determine whether this is due to measurement or developmental factors. [2] We found that EF measures 
using numerical stimuli inflate estimates of the EF-Math association by roughly 40%, and thus recommend 
researchers avoid using numerical stimuli in their EF measures when their goal is to estimate the 
magnitude of EF↔Math associations. [3] In terms of SES, the strongest average EF-Math association was 
found for low SES samples – a finding with important implications for preschool programs targeted at this 
population, such as Head Start and many state pre-K programs. Considering longitudinal associations, [4] 
those that do not adjust for time-1 measurement of the outcome variable lead to substantially (as much 
as 120%) inflated estimates of directional associations. After making these adjustments, we nevertheless 
found [5a] significant, albeit reduced bidirectional relations between EF and math. We also found [5b] 
that math is a stronger predictor of future change in EF than the reverse, and thus recommend that math 
instruction serve as a foundation for embedding EF-building skills rather than isolating EF-fostering 
activities from the math curriculum.  In sum, we hope that the results of this work contribute to theoretical 
models of the interaction between EF and math in early childhood, to increasing understanding of the 
inter-connected developmental courses of growth in math and EF capacities, and to practical attempts to 
foster growth in children’s EF and math skills, whether in the lab, classroom or living room.  
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APPENDIX A 

Table A-1 
Subcategory mean r lower upper N(rs) 

EF: Subcomponents vs Global Measures 
Inhibitory Control .276 .249 .303 235 
Working Memory .352 .334 .370 389 

Cognitive Flexibility .327 .307 .346 132 
Composite .515 .489 .541 120 
Integrative .338 .312 .365 146 

EF: Lab-Based vs Naturalistic Measures 
Lab-Based .347 .334 .360 826 

Naturalistic .328 .305 .351 159 
EF: Direct vs Observational Measures 

Direct .347 .334 .359 937 
Observational .285 .255 .314 65 

EF: Numerical vs Non-numerical Stimuli 
Numerical .459 .436 .482 852 

Non-Numerical .327 .315 .340 170 
Math: Math Domain 

Achievement .396 .381 .411 484 
Arithmetic .246 .220 .272 161 

Basic Numeracy .327 .307 .346 377 

Table A-1 gives exact values for measurement subcategories (values are 
visualized in Figure 1). ‘Upper’ and ‘lower’ are 95% confidence-interval 
limits; N(rs) is the number of effects used to compute a given mean r-value.  
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Table A-2 
Subcategory mean r lower upper N(rs) 

Socioeconomic Status (SES) 
Low SES .431 .398 .464 177 

Mid-High SES .317 .255 .378 58 
Mixed SES .336 .324 .348 787 

Table A-2 gives exact values for measurement subcategories (values are 
visualized in Figure 2). ‘Upper’ and ‘lower’ are 95% confidence-interval 
limits; N(rs) is the number of effects used to compute a given mean r-
value.  

 

Table A-3 
Subcategory mean r lower upper N(rs) 

Cross-Sectional vs Longitudinal Effects 
Cross-Sectional 0.367 0.349 0.386 486 

Longitudinal 0.336 0.322 0.351 536 
Unadjusted Longitudinal Effects 

EF→M 0.419 0.380 0.457 89 
M→EF 0.420 0.386 0.454 87 

Adjusted Longitudinal Effects 
EF→ΔM 0.190 0.159 0.220 89 
M→ΔEF 0.240 0.216 0.264 87 

Table A-3 gives exact values for longitudinal effects (values are visualized 
in Figure 3). ‘Upper’ and ‘lower’ are 95% confidence-interval limits; N(rs) 
is the number of effects used to compute a given mean r-value. Note that, 
for comparison purposes, unadjusted longitudinal effects are limited to 
those for which adjusted longitudinal effects were possible to compute 
(see Methods for details). 
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