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1 | INTRODUC TION
Humans have the capacity to represent magnitudes both non‐sym‐
bolically (such as arrays of dots or sets of apples) and symbolically 
(such as number words or Arabic numerals). The suite of abilities 
for representing and manipulating non‐symbolic quantities is 
often referred to as the approximate magnitude system (AMS) or 
approximate number system (ANS; in keeping with Núñez, 2017, 
we adopt the former here). The set of abilities for representing 

and manipulating symbolic quantities is known as the symbolic 
number system (SNS). Much research is focused on understanding 
how these foundational magnitude systems underpin more com‐
plex numerical and mathematical abilities (Lyons, Price, Vaessen, 
Blomert, & Ansari, 2014; De Smedt, Noël, Gilmore, & Ansari, 
2013; De Smedt, Verschaffel, & Ghesquière, 2009; Toll, Viersen, 
Kroesbergen, & Luit, 2015) and the degree to which these two sys‐
tems are linked throughout development has been hotly debated.
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Abstract
A long‐standing debate in the field of numerical cognition concerns the degree to 
which symbolic and non‐symbolic processing are related over the course of develop‐
ment. Of particular interest is the possibility that this link depends on the range of 
quantities in question. Behavioral and neuroimaging research with adults suggests 
that symbolic and non‐symbolic quantities may be processed more similarly within, 
relative to outside of, the subitizing range. However, it remains unclear whether this 
unique link exists in young children at the outset of formal education. Further, no 
study has yet taken numerical size into account when investigating the longitudi‐
nal influence of these skills. To address these questions, we investigated the rela‐
tion between symbolic and non‐symbolic processing inside versus outside the 
subitizing range, both cross‐sectionally and longitudinally, in 540 kindergarteners. 
Cross‐sectionally, we found a consistently stronger relation between symbolic and 
non‐symbolic number processing within versus outside the subitizing range at both 
the beginning and end of kindergarten. We also show evidence for a bidirectional 
relation over the course of kindergarten between formats within the subitizing range, 
and	a	unidirectional	relation	(symbolic	→	non‐symbolic)	for	quantities	outside	of	the	
subitizing range. These findings extend current theories on symbolic and non‐sym‐
bolic magnitude development by suggesting that non‐symbolic processing may in 
fact play a role in the development of symbolic number abilities, but that this influ‐
ence may be limited to quantities within the subitizing range.
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1.1 | Two systems for symbolic and non‐symbolic 
quantity processing

On the one hand, the fact that a system for non‐symbolic quan‐
tity processing is present from early infancy (Xu & Spelke, 2000; 
Xu, Spelke, & Goddard, 2005), and also within non‐human animals 
(Cantlon, 2012), has led some to suggest that non‐symbolic repre‐
sentations of quantity form the foundation from which culturally 
derived number symbols are learned (Dehaene, 2007; Feigenson, 
Libertus, & Halberda, 2013). More specifically, some researchers 
have proposed that humans acquire the meaning of number symbols 
by mapping them directly onto their non‐symbolic counterparts, 
thereby forging a direct link between the preexisting AMS and the 
SNS by which the two systems become systematically integrated 
over developmental time (Feigenson, Dehaene, & Spelke, 2004; 
Piazza, 2011). However, a growing body of behavioral and neu‐
roimaging research has begun to challenge the notion of a shared 
representational system for symbolic and non‐symbolic process‐
ing (Bulthé, Smedt, & Op de Beeck, 2014; Lyons, Ansari, & Beilock, 
2012,	2015;	Lyons,	Bugden,	Zheng,	Jesus,	&	Ansari,	2018;	Matejko	&	
Ansari, 2016; Mussolin, Nys, Content, & Leybaert, 2014; Sasanguie, 
Defever, Maertens, & Reynvoet, 2014). More specifically, some have 
suggested that symbolic number skills develop independently from 
the AMS in childhood (Lyons et al., 2018; Matejko & Ansari, 2016; 
Mussolin et al., 2014; Sasanguie et al., 2014) and that these two sys‐
tems remain distinct in adulthood (Lyons, Ansari, & Beilock, 2012).

If the development of the SNS is in fact rooted in the AMS, one 
would expect to see a strong relation between non‐symbolic quan‐
tity processing and the acquisition of later symbolic number skills; 
however, the majority of longitudinal studies has failed to provide 
evidence that this is the case (e.g. Lyons et al., 2018; Matejko & 
Ansari, 2016; Mussolin et al., 2014; Sasanguie et al., 2014). While 
there is a body of literature demonstrating a link between AMS acu‐
ity and later symbolic number knowledge (Chu, VanMarle, & Geary, 
2015, 2016; Elliott, Feigenson, Halberda, & Libertus, 2019; Geary et 
al., 2018; Shusterman, Slusser, Halberda, & Odic, 2016), these stud‐
ies tend to be limited in their ability to make directional inferences 
regarding the relation between symbolic and non‐symbolic process‐
ing. More specifically, while many of these studies are longitudinal in 
nature (i.e. different measures were administered at different time 
points), the authors do not implement repeated measures and are 
therefore unable to control for the preexisting relation between 
symbolic and non‐symbolic processing at time one. As such, these 
studies do not provide strong evidence for a relation between non‐
symbolic skills at time one and growth in symbolic number abilities 
(see Bailey, Duncan, Watts, Clements, & Sarama, 2018).

One exception is a recent study by Elliott et al. (2019) who uti‐
lized a repeated measures design to assess directionality in the re‐
lation between symbolic and non‐symbolic processing. Overall, the 
authors observed evidence for a bidirectional relation between 
non‐symbolic processing and math achievement, with non‐sym‐
bolic skills at the beginning of preschool predicting growth in math 

achievement and vice versa. However, it is important to note that 
Elliott et al. assessed math achievement using the Test of Early Math 
Abilities 3 (TEMA‐3; Ginsburg & Baroody, 2003), which includes 
items that tap both informal and formal math skills. The informal 
items include assessments of both symbolic and non‐symbolic skills 
while the formal items are primarily symbolic. Interestingly, prior re‐
search has shown that AMS acuity is related to the informal, but not 
the formal, items on the TEMA‐3 (Libertus, Feigenson, & Halberda, 
2013). Given that Elliott et al. (2019) did not distinguish between 
formal and informal items in their analysis, it is possible that the ob‐
served bidirectional relation may be driven by the inclusion of the 
informal items. Moreover, inclusion of informal items may help ex‐
plain the discrepancy between the Elliott et al. results and those in 
studies focusing on a narrower definition of strictly symbolic skills 
(Lyons et al., 2018; Matejko & Ansari, 2016; Mussolin et al., 2014; 
Suárez‐Pellicioni & Booth, 2018).

For the purposes of the current study, we define symbolic num‐
ber processing as performance on a task that uses strictly symbolic 
stimuli and therefore does not require perceptual processing of non‐
symbolic stimuli. On a practical level, this definition of symbolic num‐
ber processing also aligns closely with the majority of higher order 
math assessments, which tend to rely exclusively on symbolic repre‐
sentations of quantity. Of the repeated measures studies that follow 
a similar operational definition of symbolic number processing, to 
our knowledge, all have identified a unidirectional relation between 
symbolic and non‐symbolic processing, with the former predicting 
growth in the latter, but not the reverse (Lyons et al., 2018; Matejko 
& Ansari, 2016; Mussolin et al., 2014; Suárez‐Pellicioni & Booth, 
2018). For example, Lyons et al. (2018) administered both a symbolic 
and non‐symbolic comparison task to 539 kindergarten children at 
the beginning and end of the school year. The authors observed that 
while symbolic number abilities at the beginning of kindergarten 
predicted growth in non‐symbolic processing, non‐symbolic abilities 
did not predict growth in symbolic processing. Evidence of a simi‐
lar unidirectional relation between these two systems has been ob‐
served in preschoolers (Mussolin et al., 2014) and also in first graders 
(Matejko & Ansari, 2016). Taken together, not only do these findings 
challenge the notion that the AMS drives the acquisition and further 

Research Highlights

• Symbolic and non‐symbolic processing are more strongly 
related within the subitizing range in both the fall and 
spring of the Kindergarten year.

• Bidirectional longitudinal relation between symbolic and 
non‐symbolic processing for trials specifically within the 
subitizing range (1–4).

• Unidirectional longitudinal relation between symbolic 
and	non‐symbolic	 (symbolic	→	non‐symbolic)	process‐
ing for trials outside of the subitizing range.
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refinement of symbolic number abilities, they in fact suggest the op‐
posite – that symbolic number abilities may drive further develop‐
ment of the AMS.

Overall, the evidence reviewed above converges on the idea that 
non‐symbolic quantity processing plays perhaps only a limited role 
in the development of symbolic number abilities, but the majority 
of this work has failed to consider that not all non‐symbolic repre‐
sentations of quantity are approximate. More specifically, research 
has shown that humans have the capacity to form rapid and exact 
representations of non‐symbolic quantities between one and four, a 
process referred to as subitizing (Kaufman, Lord, Reese, & Volkmann, 
1949). Outside of the subitizing range (1–4), individuals must rely 
on counting to form exact numerical representations of non‐sym‐
bolic quantities. It is when counting becomes too strenuous, or is 
excluded as an option, that estimates of non‐symbolic quantities be‐
come imprecise (Dehaene, 1992). The fact that subitizable quantities 
can be represented exactly, rather than approximately, suggests that 
they may be processed more similarly to their symbolic counterparts 
than are larger non‐symbolic quantities.

1.2 | Exact representations of subitizable quantities

The hypothesis that subitizable non‐symbolic quantities may be 
processed similarly to symbolic numbers stems from research sug‐
gesting that small quantities are subserved via systems that allow 
for exact representation of quantity such as pattern recognition 
(Mandler & Shebo, 1982) or parallel individuation (Carey, 2009; 
Feigenson, Carey, & Hauser, 2002; Feigenson et al., 2004; Lipton & 
Spelke, 2004; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008; Uller, 
Carey, Huntley‐Fenner, & Klatt, 1999). In terms of pattern recogni‐
tion, the limited variation in the degree to which small quantities can 
be arranged means that they are often arranged in familiar patterns, 
allowing for the rapid apprehension of the total number of items in 
the set. Given that systematic representation of a meaningful pat‐
tern is a hallmark characteristic of symbols, the fact that subitizable 
quantities are more prone to pattern recognition than are larger 
quantities suggests that they may be processed more similarly to 
symbolic numbers.

Further support for the claim that subitizable quantities may 
be processed similarly to symbolic numbers stems from research 
suggesting that subitizing depends on parallel individuation rather 
than estimation (Carey, 2009; Feigenson et al., 2002, 2004; Lipton 
& Spelke, 2004; Revkin et al., 2008; Uller et al., 1999). Unlike the 
AMS, which provides imprecise estimates of quantity, the parallel 
individuation system allows for exact representation of the total 
number of items in a set – albeit in a highly restricted range, typically 
from about 1 to 4. Support for the notion of subitizing stems from 
research suggesting that small (1–4) and large (>4) non‐symbolic 
magnitude processing differentially engage attentional resources, 
such as eye movements and visual working memory (Ansari, Lyons, 
Eimeren, & Xu, 2007; Burr, Turi, & Anobile, 2010; Egeth, Leonard, 
& Palomares, 2008; Piazza, Fumarola, Chinello, & Melcher, 2011; 
Watson, Maylor, & Bruce, 2007). For example, using eye tracking 

data, Watson et al. (2007) found that eye movements are required 
for the accurate enumeration of quantities outside of the subitizing 
range but not for the accurate representation of quantities within 
the subitizing range. More specifically, the authors found that when 
the participant's ability to saccade was restricted, the enumera‐
tion of larger quantities became slower and less accurate while the 
enumeration of subitizable quantities remained fast and accurate. 
Furthermore, Piazza et al. (2011) found that an individual's subitiz‐
ing limit or capacity was predicted by their visual working memory 
capacity (i.e. the number of discrete items they could successfully 
recall after a short delay). Estimation performance on sets of larger 
quantities outside the subitizing range was unrelated to visual work‐
ing memory capacity. Together, these data lend support to the claim 
that smaller quantities can be processed via a separate system that 
allows for an exact representation of quantity. It is this notion of 
exact representation within the subitizing range that underlies the 
hypothesis that subitizable quantities may be processed more simi‐
larly to symbolic numbers than larger quantities.

1.3 | The relation between subitizable 
quantities and number symbols

Overall, the body of research reviewed above suggests that smaller 
quantities can be represented exactly through parallel individuation 
while larger quantities are represented approximately through esti‐
mation. Given that exact representation is a key property of number 
symbols (Núñez, 2017), it seems plausible that non‐symbolic quan‐
tities within the subitizing range may be processed more similarly 
to symbolic quantities than are non‐symbolic quantities outside this 
range. Consistent with this, evidence from adults has shown that the 
mixing cost (i.e. increase in reaction time) associated with translating 
between symbolic and non‐symbolic representations of number is 
significantly smaller for quantities within the subitizing range com‐
pared to larger quantities (Lyons et al., 2012). It is easier for adults to 
translate between the two systems when quantities are small rather 
than large, suggesting that processing of symbolic numbers may be 
more similar to that of their non‐symbolic counterparts within the 
subitizing range. This hypothesis is further supported by neuroimag‐
ing evidence demonstrating stronger similarity between patterns of 
neural activity elicited by symbolic and non‐symbolic quantities for 
smaller relative to larger quantities (Lyons & Beilock, 2018). Overall, 
these findings suggest that, in adults, the link between symbolic and 
non‐symbolic processing may be stronger for subitizable quantities 
that can be represented exactly within both the AMS and SNS.

While the above work was conducted with adults, it is important 
to understand whether this unique link between number symbols 
and subitizable quantities is also observed in children at the outset 
of formal education. If it is the case that the relation between sym‐
bolic and non‐symbolic number processing is stronger within the 
subitizing range in young children, this could have implications for 
educators as they may want to pay particular attention to this link 
when scaffolding further number development. Previous work at 
this stage in development points toward a unidirectional relation 
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between symbolic and non‐symbolic magnitude processing, with 
symbolic skills predicting growth in non‐symbolic processing but 
not the other way around (Lyons et al., 2018; Matejko & Ansari, 
2016; Mussolin et al., 2014). As such, this body of literature con‐
verges around the conclusion that the AMS plays little to no role 
in the development of symbolic number skills. However, this line 
of research has thus far failed to consider that not all non‐symbolic 
quantity estimations are approximate (Carey, 2009; Feigenson et 
al., 2002, 2004; Lipton & Spelke, 2004; Uller et al., 1999). More 
specifically, subitizable quantities are thought to be represented 
exactly through parallel individuation whereas larger quantities 
are thought to be represented approximately through estimation 
(e.g. Revkin et al., 2008; Ansari et al., 2007, Burr et al., 2010; Egeth 
et al., 2008; Piazza et al., 2011; Watson et al., 2007). Given that 
numerical symbols reflect exact representations of quantity, the 
fact that subitizable quantities can be represented exactly sug‐
gests that the relation between symbolic and non‐symbolic pro‐
cessing may be stronger within the subitizing range.

1.4 | Current study

The aim of the current study was to investigate whether the relation 
between symbolic and non‐symbolic processing differs inside versus 
outside of the subitizing range, both cross‐sectionally and longitudi‐
nally, in a large sample of kindergarten children. Given prior research 
indicating that subitizable quantities may be processed more similarly 
to symbolic numbers than larger quantities, we hypothesize that sym‐
bolic and non‐symbolic processing should be more closely related for 
quantities within, than outside of, the subitizing range. Further, it is 
plausible that the unidirectional relation between these two systems 
(in which symbolic processing predicts growth in non‐symbolic pro‐
cessing but not the other way around) observed in prior research is 
being driven in part by the inclusion of larger numbers (Lyons et al., 
2018; Matejko & Ansari, 2016; Mussolin et al., 2014). More specifi‐
cally, given that both number symbols and subitizable quantities can 
be considered exact representations, it is plausible that practice with 
one will promote growth in the other to a similar extent. Therefore, 
we hypothesize the presence of a significant bidirectional longi‐
tudinal relation between these two systems specifically within the 
subitizing range. We chose to investigate these hypotheses within 
kindergarteners, as children of this age are just beginning formal edu‐
cation and therefore have yet to develop fluency with symbolic and 
non‐symbolic number skills. As such, this is a key stage of develop‐
ment in which to investigate growth in these skills.

2  | METHODS

It is important to note that the data presented here come from a 
large, longitudinal data set, a portion of which has been described 
and reported elsewhere (Lyons et al., 2018). However, the current 
study addresses a unique set of theoretical questions and analyzes 
the data in a manner distinct from those reported previously.

2.1 | Participants

Data were collected from 694 Senior Kindergarten1  children across 36 
schools2  within the Toronto District School Board (TDSB). Of these 694 
students, 154 were removed due to missing data in one or more condi‐
tions of interest at either time point (fall or spring). This resulted in a 
final sample of 540 children (241 female; 67 not born in Canada). Mean 
age at the first time point (beginning of the school year) was 5.17 years 
(range: 4.67–5.77, SD: 0.29). Socioeconomic status (SES) was not avail‐
able at the child level, although, it could be estimated for each school.3  
Schools were categorized as 0 = Low‐SES (25%), 1 = Medium‐Low‐SES 
(31%), 2 = Medium‐High‐SES (33%), and 3 = High‐SES (11%).

2.2 | Procedure

2.2.1 | Research collaborations

The data reported here are part of a joint research project between 
the TDSB and the University of Western Ontario (UWO), which 
was approved by the TDSB’s External Research Review Committee 
(ERRC). All data collection was conducted in collaboration with 
teachers, Early Childhood Educators (ECEs) and administrators 
in TDSB schools. The Board authorized TDSB’s Research and 
Development Department to collect assessment data and personal 
information for the purposes of the Board's educational planning. 
Parents of participating students were informed that classroom ed‐
ucators would be collecting the assessment data and that confiden‐
tial student‐level data would be kept within the TDSB’s Research and 
Development Department. The TDSB’s Research and Development 
was authorized to share depersonalized data (stripped of any school 
or student identifiers) with related research partners for this study. 
Assessment materials were approved by the University of Western 
Ontario's Non‐Medical Research Ethics Board.

2.2.2 | Data collection

Data were collected by the teachers and ECEs of the classrooms in 
which the testing took place. Teachers and ECEs were trained on 
administering the Numeracy Screener during an in‐service work day. 
Administration of the Numeracy Screener was conducted during 
15–20 min one‐on‐one testing sessions with the teacher/ECE and 
the student in a separate, quiet area at two time points: fall of 2014 
and spring of 2015. The average interval between assessments was 
191.99 days (range: 141–217 days, SD: 13.89).

In each testing session, the teacher/ECE went over a predefined 
set of instructions with the student. Task‐specific instructions and gen‐
eral guidelines were printed in the booklet on the page before the start 
of each task. Before each task, the teacher/ECE went through several 
example items with the child to ensure that they understood the task 
and then explained to the child that, “You should try to complete as 
many problems as you can. You have two minutes. Work as fast as you 
can without making too many mistakes. If you make a mistake, draw an 
X through the mistake and put a new line through the right answer.” A 
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corrected answer counted as a correct trial. Finally, students were in‐
structed to complete the items for each task in the order in which they 
were presented and not to skip any. After going over the instructions 
and practice items, the teacher/ECE started the timer, and the child 
began the task.

2.3 | Numeracy screener

The Numeracy Screener booklets were based on a design originally 
developed by Nosworthy, Bugden, Archibald, Evans, and Ansari (2013). 
The booklets contain six basic numerical tasks, although only two (the 
numeral comparison and dot comparison tasks) are of relevance for 
the current study. Students completed the numeral comparison task, 
followed by the dot comparison task. Both comparison tasks were 
made up of 72 items, with 12 items per page. Of the 72 items, 24 were 
comprised of two numerals/quantities within the subitizing range (1–4; 
hereafter referred to as small trials), 24 were comprised of two numer‐
als/quantities outside of the subitizing range (6–94 ; hereafter referred 
to as large trials), and 24 were comprised of one numeral/quantity 
within the subitizing range and the other outside of the subitizing range 
(trials of this type were not included in the analyses). Numerical param‐
eters (not only size, but also ratio and distance) were counter‐balanced 
across trials such that the child would have encountered roughly an 
equal number of ratios, sizes, and distances across both tasks, regard‐
less of how far they got in each task. Continuous parameters such as 
dot area and overall contour length were also controlled for in the dot 
comparison task. On both tasks, participants completed as many items 
as possible within 2 minutes. For more specific information on how 
continuous parameters were controlled, see Lyons et al. (2018).

2.3.1 | Numeral comparison

Children's symbolic number knowledge was assessed using the nu‐
meral comparison task (α = 0.83; Lyons et al., 2018). Examples of 
small and large trials for this task are shown in Figure 1a. Before 
beginning the task, children were told, “In this task, your job is to de‐
cide which of the two numbers is bigger. Draw a line through the box 
with the number that means the most things.” Children completed as 
many items as they could within 2 minutes.

2.3.2 | Dot comparison

Children's non‐symbolic magnitude knowledge was assessed using 
the dot comparison task (α = 0.70, Lyons et al., 2018). This task is 
thought to be a valid assessment of children's non‐symbolic magni‐
tude skills as it has been shown to reliably produce ratio effects (i.e. 
a decrease in performance as the ratio between the two quantities 
being compared approaches one; Lyons et al., 2018). An example 
of both a small and large trial for this task is shown in Figure 1b. 
Before beginning the task, children were told, “In this task, your 
job is to decide which of two boxes contains more dots. Draw a line 
through the box that has the most dots in it.” Children were also 
instructed not to try and count the dots and were told “Instead, 
just look at the dots and try your best to guess which side has more 
dots in it.” Children completed as many items as they could within 
2 minutes.

2.3.3 | Task scoring

Raw scores were calculated as the total number of correct re‐
sponses within the 2‐minute time limit. Scores were corrected 
for guessing (a child who randomly guessed on all 72 items would 
have received a score of 36), by using the standard adjustment: 
A = C–[I/(P–1)], where A is the adjusted score, C is the number 
correct, I is the number incorrect, and P is the number of re‐
sponse options (Rowley & Traub, 1977). Using this adjustment, 
those who used a guessing strategy, on average, would receive a 
score of 0. For example, on a 4‐item multiple‐choice exam (where 
each choice is equally probable), those who randomly guessed on 
20 items would, on average, receive a raw score (C in the equa‐
tion above) of 5. Therefore, those who used a guessing strategy 
in this example would receive an adjusted score (A) of: 5–[15/
(4–1)] = 0. In the current study, the task items only had two al‐
ternatives with equal probability of being correct (left and right 
quantity), so the equation for the adjusted score is essentially the 
number of items correct minus incorrect (A = C–I). Scores were 
calculated separately for subitizable and non‐subitizable trials. 
Adjusted scores were used in all subsequent analyses.

F I G U R E  1   Shows examples of small 
and large trials for the numeral (a) and dot 
comparison (b) tasks

 14677687, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.12884 by G

eorgetow
n U

niversity M
ed C

enter, W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 13  |     HUTCHISON eT al.

2.3.4 | Covariates

In all regression‐based analyses, we controlled for age at time 1 
(years), sex, whether a child was born in Canada (0 or 1), school SES, 
percentage of days absent during the Senior Kindergarten school 
year (M = 8.9%, SD = 7.2%, min = 0%, max = 55%)5  and the test‐
ing interval (in days).6  All analyses were conducted using Stata 15 
(StataCorp, 2017).

3  | RESULTS

3.1 | Task descriptives

Table 1 reports the mean, standard deviation and minimum and max‐
imum performance (adjusted scores: correct – incorrect) on small 
and large trials for the numeral (NC) and dot comparison (DC) tasks 
in the fall and spring of the Senior Kindergarten year. Performance 
was above chance (>0) for all conditions (all ps < 0.001). Also of note, 
children improved over the course of the Senior Kindergarten year 
across all conditions (all ps < 0.001). Table 2 displays the zero‐order 
correlations between all conditions and both time points.

3.2 | Cross‐sectional results

Here, we analyzed the data in a cross‐sectional manner to inves‐
tigate whether symbolic and non‐symbolic processing are more 
closely related within the subitizing range at the beginning and end 
of the Senior Kindergarten year. To do so, we calculated partial cor‐
relations between performance on the numeral and dot comparison 
tasks separately for small and large trials, controlling for age at time 
one, sex, whether a child was born in Canada, school SES, percent‐
age of days absent during the Senior Kindergarten year and the 
testing interval. As these analyses were cross‐sectional, they were 
conducted separately for fall and spring.

Results from the cross‐sectional partial correlations are visu‐
alized in Figure 2. As can be seen in the figure, there was a sig‐
nificant, positive correlation between symbolic and non‐symbolic 
processing for small and large trials in both the fall (Figure 2a) and 
spring (Figure 2b) of the kindergarten year. However, our main 
question concerned whether cross‐format correlations signifi‐
cantly differed inside versus outside of the subitizing range. To 
test this, we compared small trial with large trial cross‐format par‐
tial‐r values using two standard Fisher's z‐tests (one comparison 
at each time point). Results showed that the cross‐format relation 
between symbolic and non‐symbolic processing was significantly 
stronger for small‐ relative to large trials at both the beginning 
(Z = 5.98, p < .001) and end (Z = 6.33, p < .001) of the kindergarten 
year. These findings are consistent with the hypothesis that sym‐
bolic and non‐symbolic processing are more closely related within 
the subitizing range.

3.3 | Longitudinal results

Here, we analyzed data longitudinally to assess how symbolic and 
non‐symbolic processing predict growth in one another, both within 
and outside the subitizing range. To test this, we asked whether sym‐
bolic processing at the beginning of Senior Kindergarten predicts 
growth in non‐symbolic processing over the course of the school 

TA B L E  1   Task descriptives

Fall Spring

Mean Std. Dev Mean Std. Dev

NC

Small 6.98 5.30 10.93 4.96

Large 5.46 5.82 9.73 5.99

DC

Small 7.61 4.21 10.44 4.31

Large 2.30 2.92 3.94 3.74

Abbreviations: DC, dot comparison; NC, numeral comparison.

Fall Spring

NCS DCS NCL DCL NCS DCS NCL DCL

Fall NCS — 0.62 0.83 0.28 0.64 0.50 0.66 0.46

DCS 0.62 — 0.51 0.27 0.51 0.49 0.48 0.30

NCL 0.83 0.51 — 0.32 0.61 0.45 0.68 0.47

DCL 0.28 0.27 0.32 — 0.19 0.14 0.24 0.32

Spring NCS 0.64 0.51 0.61 0.19 — 0.70 0.85 0.46

DCS 0.50 0.49 0.45 0.14 0.70 — 0.60 0.40

NCL 0.66 0.48 0.68 0.24 0.85 0.60 — 0.46

DCL 0.46 0.30 0.47 0.32 0.46 0.40 0.46 —

Abbreviations: DCL, dot comparison (large trials); DCS, dot comparison (small trials); NCL, number 
comparison (large trials); NCS, number comparison (small trials).
Table 2 shows zero‐order correlations between all conditions across both time points.
All correlations were significant at the p < .001 level.

TA B L E  2   Zero‐order correlations
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     |  7 of 13HUTCHISON eT al.

year, and vice versa. Crucially, we tested this for small and large tri‐
als separately. As such, we ran four separate regression models, key 
results from which are summarized in Figure 3 (full model results 
can be found in Table A1 [small trials] and Table A2 [large trials], 
Appendix 1). All models included the covariates listed above as well 
as time 1 performance on the dependent variable. Controlling for 
time 1 performance removes time 1 variance from both the predic‐
tor and outcome, thus allowing one to assess the degree to which 

a given variable predicts change in the outcome. (Because children 
improved in all conditions from time 1 to time 2 on average – see 
Table 1 – we refer to this change here as ‘growth’.) By controlling for 
baseline performance, we are essentially controlling for the preex‐
isting relation between the outcome and the predictor (in addition 
to the autoregressive relation) which allows us to make directional 
inferences while also taking each individual's intercept into account. 
This method of assessing growth has been used in prior studies on 

F I G U R E  2   Visualizes the results from 
the cross‐sectional partial correlations 
between performance on the small 
and large trials of the numeral and dot 
comparison tasks in the fall (a) and spring 
(b) of the kindergarten year. In Figure 2a 
and 2b, the correlation between the small 
trials of the numeral and dot comparison is 
indicated by the bidirectional arrow on the 
top, while the correlation between large 
trials of the number and dot comparison 
task is indicated by the bidirectional arrow 
on the bottom. The size and color of the 
arrows reflect the magnitude of the partial 
r‐values. Exact values are in bold; numbers 
in parentheses are corresponding 
p‐values. Abbreviations: DC, dot 
comparison; NC, numeral comparison

F I G U R E  3   Visualizes key results of 
primary theoretical interest from the 
longitudinal regression models (see 
Appendix 1 for full regression details), 
predicting growth in symbolic and non‐
symbolic processing for small (a) and 
large trials (b). Arrows going from one 
task to the other indicate the unique 
relation between the originating task in 
the fall and growth in the outcome (time 
2 performance controlling for time 1 
performance). Circular arrows indicate 
autoregressive effects (the unique relation 
between a given task across  
time points). The size and color of the 
arrows reflect the magnitude of partial 
r‐values. Exact values are in bold; numbers 
in parentheses are corresponding 
p‐values. Abbreviations: DC, dot 
comparison; NC, numeral comparison
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8 of 13  |     HUTCHISON eT al.

similar topics (e.g. Lyons et al., 2018; Mussolin et al., 2014). To assess 
whether symbolic skills predict growth in non‐symbolic skills to a 
significantly different extent than non‐symbolic skills predict growth 
in symbolic skills (both inside and outside of the subitizing range), 
we compared coefficients across models using seemingly unrelated 
estimation tests in Stata (SUEST).

3.3.1 | Small Trials

From Figure 3a, when looking specifically within the subitizing range, 
symbolic and non‐symbolic skills in the fall are both predictive of 
growth in one another. Note that both relations are positive, indicat‐
ing that stronger skills at time 1 in one skill predict greater positive 
change in the other over the course of the school year. While the 
partial r‐value associated with the relation between NC and growth 
in DC appears larger than that associated with the relation between 
DC and growth in NC, results from the SUEST test indicated that 
these two relations are not significantly different from one another 
(χ2

539 = 0.46, p = .498). Overall, these findings provide evidence for a 
bidirectional relation between symbolic and non‐symbolic process‐
ing within the subitizing range.

3.3.2 | Large Trials

As can be seen in Figure 3b, when looking outside of the subitizing 
range, symbolic skills in the fall are a significant positive predictor of 
growth in non‐symbolic abilities, but non‐symbolic skills in the fall 
do not appear to significantly predict growth in symbolic abilities. 
Consistent with this, results from the SUEST test suggest that sym‐
bolic number skills are a significantly stronger predictor of growth 
in non‐symbolic skills than the other way around (χ2

539 = 8.44, 
p = .004). Taken together, these findings suggest that the unidirec‐
tional relation between symbolic and non‐symbolic processing re‐
ported in prior studies (Lyons et al., 2018; Matejko & Ansari, 2016; 
Mussolin et al., 2014) may be specific to larger quantities outside of 
the subitizing range.

4  | DISCUSSION

Recent longitudinal results have indicated that the relation between 
symbolic and non‐symbolic processing may be unidirectional, with 
symbolic number skills predicting growth in non‐symbolic processing 
but not the other way around (Lyons et al., 2018; Matejko & Ansari, 
2016; Mussolin et al., 2014; Sasanguie et al., 2014). These findings 
suggest that while symbolic number abilities may play a role in the 
development of the AMS, the AMS plays perhaps only a limited role 
in the development of symbolic number skills (at least after the onset 
of formal education). However, despite evidence to suggest that the 
relation between symbolic and non‐symbolic processing may be 
stronger within the subitizing range (Carey, Shusterman, Haward, & 
Distefano, 2017; Le Corre & Carey, 2007; Lyons et al., 2012; Lyons 
& Beilock, 2018), prior studies examining the longitudinal relations 

between symbolic and non‐symbolic processing have failed to take 
numerical size into account. To address this gap in the literature, the 
aim of the current study was to investigate whether the relation be‐
tween symbolic and non‐symbolic processing differs inside versus 
outside of the subitizing range, both cross‐sectionally and longitudi‐
nally, in a large sample of kindergarten children.

Cross‐sectionally, we found that symbolic and non‐symbolic 
processing were more strongly related within the subitizing range 
in both the fall and spring of the Senior Kindergarten year. Further, 
when looking at the longitudinal influence of these skills, we found 
evidence for a bidirectional relation between symbolic and non‐sym‐
bolic processing specifically within the subitizing range, with non‐
symbolic skills in the fall predicting growth in symbolic processing 
to roughly the same degree that symbolic skills in the fall predicted 
growth in non‐symbolic processing. This is inconsistent with prior 
work that has observed an asymmetrical relation between these 
two systems in childhood, with symbolic skills predicting growth 
in non‐symbolic skills but not the other way around (Lyons et al., 
2018; Matejko & Ansari, 2016; Mussolin et al., 2014; Sasanguie et al., 
2014). Where we do find evidence for the asymmetrical influence of 
symbolic number skills is on trials that included large quantities ex‐
clusively outside of the subitizing range, suggesting that these prior 
findings may have been driven by the inclusion of larger magnitudes. 
These findings inform the long‐standing debate on the nature of the 
relation between symbolic and non‐symbolic processing by sug‐
gesting that the influence of non‐symbolic processing on symbolic 
number development may indeed persist beyond the onset of formal 
schooling, but that this influence appears to be limited to quantities 
within the subitizing range. Our results also refine recommendations 
for educators with respect to teaching basic numerical skills that are 
important for more complex math learning: school readiness in non‐
symbolic skills is likely to lead to growth in symbolic skills more so for 
small than large quantities; conversely, school readiness in symbolic 
skills is likely to lead to growth in non‐symbolic skills regardless of 
numerical size.

4.1 | Cross‐sectional findings and prior literature

One hypothesis for why symbolic and non‐symbolic processing may 
be more closely related within the subitizing range centers around 
the notion of exact representation: a key property of symbolic num‐
bers (Núñez, 2017). Subitizable magnitudes are also thought to be 
processed exactly (Carey, 2009; Feigenson et al., 2002, 2004; Lipton 
& Spelke, 2004; Revkin et al., 2008; Uller et al., 1999), which may 
therefore explain the close relation between symbolic and non‐sym‐
bolic number processing within the subitizing range. Evidence for 
a stronger link between symbolic and non‐symbolic processing for 
small compared to large magnitudes has previously been observed 
in adults (Lyons et al., 2012; Lyons & Beilock, 2018).

Moreover, theories of symbolic number acquisition suggest that 
young children scaffold the acquisition of the meaning of number 
words via numbers within (but not outside) of the subitizing range 
(Carey et al., 2017; Le Corre & Carey, 2007). More specifically, 
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     |  9 of 13HUTCHISON eT al.

through a series of experiments, Le Corre and Carey (2007) found 
that 3 to 4 year olds acquire the meaning of number words (the first 
number symbols most children learn) by directly linking them with 
sets of objects but only within the subitizing range whose exact 
numerical value can be apprehended via parallel individuation. The 
meanings of larger number words referring to quantities outside the 
subitizing range are later inferred only by extension of counting prin‐
ciples, without recourse to their corresponding non‐symbolic (AMS) 
counterparts (Carey et al., 2017). Others, however, have challenged 
the view put forward by Le Corre and Carey and provided evidence 
to suggest that the AMS may in fact play a role in the acquisition 
of	number	words	(VanMarle	et	al.,	2018;	Wagner	&	Johnson,	2011).	
While the current findings cannot directly address this debate as 
they do not inform how children initially acquire number words, they 
are broadly aligned – albeit later in development – with the view 
put forward by Le Corre and Carey who suggest that symbolic and 
non‐symbolic magnitude systems may be primarily linked within the 
subitizing range.

Overall, our cross‐sectional findings contribute to the literature 
in two ways. For one, we provide evidence for a stronger link be‐
tween symbolic and non‐symbolic processing within the subitizing 
range in children at the outset of formal education, after they have 
acquired the meaning of number symbols. Further, we provide evi‐
dence that symbolic and non‐symbolic processing are more closely 
related at both the beginning and end of the kindergarten year, 
which is to say that our findings are developmentally stable across 
the first year of formal schooling.

4.2 | Longitudinal findings and prior literature

While there is a growing body of literature indicating that symbolic 
and non‐symbolic processing may be more closely related within 
the subitizing range, the current study is the first to suggest that 
the stronger relation between subitizable quantities and numbers 
symbols may have implications for growth in these skills. Prior stud‐
ies investigating the longitudinal relations between symbolic and 
non‐symbolic processing in early childhood report evidence of a uni‐
directional relation between these two systems in which symbolic 
number skills predict growth in non‐symbolic processing but not 
the other way around (Lyons et al., 2018; Matejko & Ansari, 2016; 
Mussolin et al., 2014). Findings from these studies converge around 
the conclusion that non‐symbolic processing plays perhaps only a 
limited (if any) role in the development of symbolic number skills. 
However, findings from the current study suggest that such a con‐
clusion may be premature. More specifically, we find evidence for a 
bidirectional relation between symbolic and non‐symbolic process‐
ing when we look specifically within the subitizing range. The fact 
that we observe a positive relation between non‐symbolic process‐
ing and growth in symbolic number skills within the subitizing range 
suggests that non‐symbolic processing does in fact play some role in 
the development of symbolic number skills even after children have 
acquired a basic understanding of the meaning of number symbols. 
Where we find evidence for the previously reported unidirectional 

relation between symbolic and non‐symbolic number skills is for 
larger quantities, suggesting that the prior findings may have been 
partially driven by the inclusion of trials involving larger numbers.

In light of this new evidence, prior conclusions concerning the re‐
lation between symbolic and non‐symbolic processing should be up‐
dated to take numerical size into account. In the prior literature, two 
explanations have been put forward to explain why symbolic number 
skills appear to predict growth in non‐symbolic processing but not the 
other way around. For one, Piazza, Pica, Izard, Spelke, and Dehaene 
(2013) and Mussolin et al. (2014) have both suggested that practice 
with numbers symbols may help to improve the representational pre‐
cision of the AMS. In other words, gaining more experience with exact 
representations of number (i.e. number symbols) may help to refine 
non‐symbolic representations of magnitude, thereby rendering them 
easier to discriminate between. In contrast, Lyons et al. (2018) sug‐
gested that symbolic number skills may predict growth in non‐sym‐
bolic processing simply as a result of near‐transfer of learning how to 
perform comparison tasks in general. Specifically, the authors note that 
over the course of the school year, children demonstrate the greatest 
amount of improvement on the number comparison task and suggest 
that learning how to do this one type of comparison task transfers to 
performance on other types of comparison tasks. The results of the 
current paper suggest that both accounts may have the right of it, but 
in a way that depends on the size of the quantities in question.

On the one hand, we suggest that the bidirectional relation we 
observed here for subitizable quantities is more consistent with the 
Lyons et al. (2018) proposal based on task‐level near‐transfer, at least 
within this range. As was emphasized in the Introduction, subitizable 
magnitudes and symbolic numbers are thought to share the prop‐
erty of exact representation (Carey, 2009; Feigenson et al., 2002, 
2004; Lipton & Spelke, 2004; Revkin et al., 2008; Uller et al., 1999). 
As both forms of representation in this range are exact, it is hard 
to see how there is significant room for improvement in terms of 
representational precision, thus making it difficult to reconcile these 
results with the interpretation put forward by Piazza et al. (2013) 
and Mussolin et al. (2014). Instead, improvement is perhaps more 
likely to be due to how these quantities are processed rather than 
how they are represented. Hence, the fact that subitizable quanti‐
ties and symbolic numbers are already aligned in terms of (very high) 
representational precision may in fact facilitate task‐level transfer in 
both directions for subitizable trials. In other words, practice with 
one exact quantity discrimination task is likely to improve perfor‐
mance on another exact quantity discrimination task and vice versa.

Comparatively, one could imagine a reduction in the ease of 
task‐level transfer for larger quantity trials where there is thought 
to be a greater degree of representational misalignment between 
symbolic and non‐symbolic processing. In other words, the degree 
of task‐level transfer between an exact quantity discrimination task 
(symbolic number comparison) and an approximate quantity dis‐
crimination task (large‐quantity comparison) may be lower than the 
degree of task‐level transfer between two exact quantity discrim‐
ination tasks. As such, the task‐level transfer view put forward by 
Lyons et al. (2018) may be less compelling when it comes to larger 
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10 of 13  |     HUTCHISON eT al.

quantities. And indeed, our results here indicate that the unidirec‐
tional result in Lyons et al. (2018; as well as in Matejko & Ansari, 2016 
and Mussolin et al., 2014) may have been driven primarily by the 
larger quantities. That is, our results for large quantities appear to be 
more consistent with the view put forth by Piazza et al. (2013) and 
Mussolin et al. (2014). More specifically, while symbolic numbers are 
represented exactly, large magnitudes are thought to be represented 
approximately. As such, contrary to subitizable quantities, there 
is room for growth in the representational acuity of non‐symbolic 
quantities outside of the subitizing range. Therefore, practice with 
exact representation of number may help to refine non‐symbolic 
representations of larger magnitudes, thereby rendering them easier 
to discriminate between.

A third and previously undiscussed proposal for the unidirec‐
tional influence of symbolic to non‐symbolic large quantities is that 
experience with large symbolic numbers cues young children to the 
very notion that large quantities can be represented exactly. Prior 
to learning number symbols, children experience small quantities in 
exact form, but not large quantities. Recent work suggests that sym‐
bolic quantities are first understood in the subitizing range, and, cru‐
cially, this understanding is generalized to larger symbolic numbers 
without direct reference to their approximate analogs (Carey et al., 
2017; Le Corre & Carey, 2007). Hence, we suggest that once chil‐
dren come to the realization that large non‐symbolic quantities can 
be represented exactly may change the way they approach the dot 
comparison task especially with respect to large‐quantity trials. This 
in turn leads to an especially strong unidirectional effect from sym‐
bolic to non‐symbolic growth for trials outside the subitizing range. 
Therefore, it may not be that experience with symbolic numbers is 
refining the representational acuity of the AMS, but that experience 
with exact representation of large numbers changes the way chil‐
dren understand the very boundaries of what large quantities can 
be. Finally, we should note that this view is not mutually exclusive 
with those discussed above. While future work is surely needed to 
unpack why we observe a unidirectional relation from symbolic to 
non‐symbolic growth, the results presented here clearly indicate that 
such work would do well to take numerical size into account – in par‐
ticular, whether quantities are within or outside the subitizing range.

4.3 | Practical implications

As evidenced above, the findings from the current study primarily 
inform theory. However, given the centrality of symbolic number 
skills in early education, our findings may have some educational im‐
plications. Primarily, our results suggest that when teaching about 
non‐symbolic magnitudes in the classroom, a focus on subitizable, 
rather than larger, magnitudes may carry more weight in terms of 
symbolic number development. Furthermore, our results suggest 
that a focus on symbolic numbers in school may be beneficial for the 
development of both symbolic and non‐symbolic magnitude skills, 
regardless of numerical size. However, it is important to note that 
the mechanism mediating the unidirectional relation between sym‐
bolic and non‐symbolic processing for larger magnitudes, in which 

symbolic number abilities predict growth in non‐symbolic number 
skills, remains largely unknown.

5  | CONCLUSION

The current work provides the first evidence of a particularly strong 
link between symbolic and non‐symbolic number processing spe‐
cifically within the subitizing range in children at the outset of 
schooling. Prior work has shown this link during the acquisition of 
number words (Carey et al., 2017; Le Corre & Carey, 2007); here we 
show both cross‐sectionally and longitudinally that this link persists 
even after children have acquired the meaning of number symbols. 
Moreover, evidence for a bidirectional relation link over the course 
of kindergarten indicates that prior researchers may have been 
too quick to dismiss the potential role of – at least subitizable – 
non‐symbolic quantities in scaffolding growth in symbolic number 
skills.	 Instead,	evidence	for	a	unidirectional	 link	 (symbolic	→	non‐
symbolic,	but	not	non‐symbolic	→	symbolic)	appears	to	be	specific	
to larger quantities outside the subitizing range – a result broadly 
consistent with both work in how toddlers acquire number words 
(Carey et al., 2017; Le Corre & Carey, 2007) and neuroimaging work 
with adults (Lyons & Beilock, 2018). Finally, these results may have 
implications for how kindergarten teachers choose the quantities 
to focus on when emphasizing the link between symbolic and non‐
symbolic quantities. Together, the results presented here help unify 
several disparate lines of research across multiple methods and age 
groups to converge on the notion that symbolic and non‐symbolic 
quantities are closely linked within, but not outside of the subitiz‐
ing range.

DATA AVAIL ABILIT Y S TATEMENT

The data that support the findings of this study are available for 
download here: https ://osf.io/6ftqe/ .
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ENDNOTE S
1	 In	 many	 Canadian	 provinces,	 kindergarten	 is	 split	 into	 ‘Junior’	 and	
‘Senior’	Kindergarten.	Junior	Kindergarten	is	similar	to	what	is	some‐
times referred to as ‘preschool’ elsewhere, as it is often relatively in‐
formal in overall structure and available to children who are 4 years 
old. Senior Kindergarten is more similar to what is referred to as kin‐
dergarten elsewhere. Senior Kindergarten tends to be more formally 
structured and involves the instruction of basic formal concepts in 
mathematics and other areas. 

2 Although participants were nested across 36 schools, intraclass correla‐
tions for each of the four regression models (described below) reveal that 
less than 5% of the variance in each outcome is attributable to variation 
across schools. As a multilevel approach thus contributed only minimally, 
and to simplify interpretation and facilitation of the results for a broader 
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audience, we do not model school as a second level in our regression 
analyses. 

3 School SES was estimated from median income, percentage of families 
below the Low‐Income Measure, percentage of families on social assis‐
tance, percentage of parents without a high school diploma, percentage 
of parents with at least one university degree and percentage of lone‐
parent families. 

4 In order to equate the number of trials considered ‘small’ (1–4) and ‘large’ 
(6–9), we excluded trials that included the number 5 from analyses. 

5 Absentee rates were not available for three students. These students 
were assigned the average rate of 8.9%. Results did not differ if these 
children were excluded. 

6 One of two testing dates was not available for 21 children and thus a 
testing interval could not be calculated. These children were assigned the 
average testing interval of 191.99 days. Results did not differ if these chil‐
dren were excluded. 
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APPENDIX 1

IV (Predictor)

Outcome: DC (spring) Outcome: NC (spring)

b se p b se p

DC (fall) 0.29 0.05 1.3E−09 0.18 0.05 2.5E−05

NC (fall) 0.33 0.04 8.5E−12 0.53 0.04 1.3E−31

Age −0.06 0.55 .101 0.00 0.58 .901

Gender −0.05 0.31 .204 0.05 0.33 .116

Born in Canada 0.06 0.47 .118 0.03 0.49 .428

Percentage of days 
absent

0.00 2.21 .941 0.01 2.30 .843

School SES 0.04 0.17 .268 0.01 0.18 .774

Testing interval −0.04 0.01 .225 0.02 0.01 .540

Constant 12.66 3.51 3.4E−04 3.21 3.66 .381

Adjusted R2 0.30 0.43

df‐residual 531 531

Abbreviations: DC, dot comparison; NC, numeral comparison.
Table A1 shows standardized regression coefficients for models predicting growth in non‐symbolic 
and symbolic performance for small trials. Predictors of no interest (those not shown in Figure 3a) 
are grayed out.

TA B L E  A 1   Longitudinal regression 
results for small trials

IV (Predictor)

Outcome: DC (spring) Outcome: NC (spring)

b se p b se p

DC (fall) 0.19 0.05 1.98E−06 0.02 0.07 .651

NC (fall) 0.40 0.03 3.98E−20 0.65 0.04 4.98E−58

Age 0.08 0.49 .043 0.05 0.67 .125

Gender −0.01 0.28 .836 0.02 0.39 .487

Born in Canada −0.02 0.42 .586 0.02 0.58 .583

Percentage of 
days absent

0.00 1.99 .955 −0.01 2.71 .813

School SES −0.04 0.15 .323 0.04 0.21 .278

Testing interval −0.02 0.01 .612 0.03 0.01 .351

Constant −1.60 3.17 .615 −2.80 4.33 .517

Adjusted R2 0.25 0.46

df‐residual 531 531

Abbreviations: DC, dot comparison; NC, numeral comparison.
Table A2 shows standardized regression coefficients for models predicting growth in non‐symbolic 
and symbolic performance for large trials. Predictors of no interest (those not shown in Figure 3b) 
are grayed out.

TA B L E  A 2   Longitudinal regression 
results for large trials
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