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Ordinal number processing skills are important for adults and children. Recent work demonstrates that
children have difficulty with judging the ordinality of sequences that are in-order but do not match the
typical count-list (i.e., in-order non-adjacent sequences, such as 2-4-6). Limited evidence in the literature
suggests that dyscalculic children show a similar pattern of behavior. In the present study, we sought to
explicitly test the hypothesis that children with developmental dyscalculia struggle primarily with extending
notions of ordinality to sequences outside of the count-list. We test this hypothesis using a sample of
children with persistent developmental dyscalculia, and a comparison group of typically performing
children. Both groups completed an ordinality judgment task, in which triplet sequences were judged as
being in-order (e.g., 3-4-5; 2-4-6) or in mixed-order (e.g., 3-5-4; 2-6-4). In line with our prediction, results
demonstrate that children with persistent developmental dyscalculia make more errors, compared to
typically performing children, but only on the in-order non-adjacent trials (e.g., 2-4-6). Broadly, this finding
suggests that ordinality processing abilities are impaired in children with developmental dyscalculia, and
that this characteristic appears primarily in extending notions of ordinality beyond adjacent sequences.

Public Significance Statement
The ability to understand numerical order (e.g., the sequences 1-2-3 and 2-4-6 are in-order) is
fundamental to more complexmathematical thinking. In this work, we show that children with persistent
mathematical difficulties (i.e., children with developmental dyscalculia) struggle primarily to recognize/
identify order outside of the typical count-list (e.g., 2-4-6) compared to typically performing children.
Overall, this work identifies a key characteristic of developmental dyscalculia and provides a potential
target for future interventions.
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Ordinal processing (i.e., the ability to recognize the relative rank
or position of a number in a sequence) is a fundamental numerical
skill that plays a key role in the representation of symbolic numbers
(e.g., Arabic numerals; e.g., Lyons & Beilock, 2009, 2013; Merkley
et al., 2016) and in the development of more complex mathematics
(e.g., Lyons & Beilock, 2011; Lyons et al., 2014; Sasanguie & Vos,
2018; for a review see, Lyons et al., 2016). For example, a growing
body of research has documented robust and consistent associations
between ordinal processing and arithmetic, in which a better sense of

ordinality is associated with better arithmetic performance in both
adults (Goffin & Ansari, 2016; Lyons & Beilock, 2011; Morsanyi et
al., 2017; Vogel et al., 2017; Vos et al., 2017) and children (Attout &
Majerus, 2018; Lyons&Ansari, 2015; Lyons et al., 2014; Sasanguie
& Vos, 2018). Further, findings from both behavioral and
neuroimaging research have converged to suggest that impairments
in ordinal processing are associated with specific math learning
disabilities (i.e., dyscalculia; Attout et al., 2015; Attout & Majerus,
2015; De Visscher et al., 2015; Kaufmann et al., 2009; Morsanyi
et al., 2018; Rubinsten & Sury; 2011). In fact, while those with
developmental dyscalculia (DD) might display impairments across a
variety of domain-specific (e.g., Mazzocco et al., 2011; Mussolin
et al., 2010; Piazza et al., 2010) and domain-general skills (e.g.,
Morsanyi et al., 2018; Szucs et al., 2013), recent research suggests
that order processing skills is an important predictor of a DD
diagnosis in childhood (Morsanyi et al., 2018).

Specifically, Morsanyi et al. (2018) compared the performance
of children with persistent DD (i.e., those who scored at least 1
SD below the mean on a standardized test of math achievement
across at least 2 school years) to the performance of children without
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persistent mathematical difficulties across a range of mathematical
and cognitive tasks including executive functioning, magnitude
comparison and estimation, and numerical and nonnumerical
ordering. Overall, the authors observed that performance on the
ordering tasks identified those with persistent DD (vs. those without)
with the greatest degree of accuracy (82.5%).
Given the importance of this finding, it is worthwhile to consider

whether children with DD struggle with specific subcomponents
of ordinal processing, or with ordinal processing as a whole. One
possibility is that ordinal impairments observed in children with DD
may be primarily driven by difficulties in recognizing ordered
sequences that do not match the count-list. Children and adults
readily identify sequences like 2-3-4 (which match the standard
integer count-list) as “in-order”; however, both children and adults
are less efficient at identifying sequences that are in-order, but do
not conform to the standard count-list, such as 1-3-5 (e.g., Goffin &
Ansari, 2016; Lyons & Ansari, 2015; Vogel et al., 2017). Here,
we test the hypothesis that children with DD show particularly
pronounced difficulty recognizing noncount-list sequences as
in-order.
This hypothesis stems from studies that have found that adults

and young children struggle to extend one’s sense of numerical
order beyond the adjacent count-list sequence. Therefore, this
difficulty may be particularly pronounced, and appear as a delay, in
children with DD relative to their typically performing peers. To
that end, recent findings in the literature suggest that familiarity with
the count-list may bias both typically performing children and
adults to intuitively perceive adjacent ordered sequences that match
the count-list (e.g., “2-3-4”) as the only ordered sequences (Gattas
et al., 2021; Hutchison et al., 2022). This bias is thought to stem
from a fundamental misrepresentation of what constitutes numerical
order in early childhood. Specifically, Hutchison et al., observed
that, while typically performing kindergarten children can easily
recognize adjacent ordered sequences that match the count-list
(e.g., “2-3-4”) as being in the correct order, they incorrectly
classify non-adjacent ordered sequences that do not match this list
(e.g., “1-3-5”) as “not in-order”. Indeed, a substantial number of
children (59% of the sample) continued to reject the idea that
non-adjacent ordered sequences are in the correct order even at the
end of first grade. A similar pattern was reported in Gilmore and
Batchelor (2021): 30% of their sample (62 children ages 6−8)
incorrectly classified ordered sequences that are non-adjacent (i.e.,
those that do not match the count-list) as being “not in-order”. The
question we address here is whether the struggle to integrate a
broader understanding of numerical order into one’s understanding
of numbers persists beyond early grade school (into Grades 4−8) in
children with DD, thus constituting a significant and highly specific
developmental delay.

The Present Study

Overall, familiarity with adjacent count-list sequences appears to
influence ordinal processing via a tendency to perceive non-adjacent
ordered sequences that do not match the count-list as “not in-order”
(Gattas et al., 2021). This tendency may be a vestige of a nontrivial
struggle in the early stages of formal schooling (kindergarten–Grade 1)
to extend ordinal principles beyond the count-list, with some
children experiencing more difficulty in doing so than others
(Hutchison et al., 2022). What remains to be understood is whether

difficulties or a delay in extending ordinal principles beyond the
count-list is observed in older children, and in particular, whether
such a delay may be a particularly salient marker of persistent
dyscalculia. The present study aims to address this gap in the
literature by comparing the ordering performance of elementary
school children with persistent DD to those without consistent
mathematical difficulties, separately for trials that do and do not
match the count-list.

By persistent DD, we mean individuals who score at least 1 SD
below the mean on two standardized assessments of mathematics
across five testing sessions over a 4-year span. The fact that we
include persistency in our criteria for identifying those with DD is
notable, as many prior studies in this area tend to rely on information
from only one time point when classifying children with DD (see
Bugden et al., 2021, for a recent discussion). Relying on information
from only one time point is problematic as it does not allow one
to distinguish between those with short-term math difficulties and
those with true dyscalculia. Identifying those with short-term math
difficulties as having DD may lead to inaccurate conclusions
regarding the core deficits that contribute to a DD diagnosis (Bugden
et al., 2021; Mazzocco & Räsänen, 2013). By ensuring that we are
capturing those with true dyscalculia, we can bemore confident in our
conclusions regarding potential difficulties with specific aspects of
ordinality.

In sum, building on insights from prior literature (Gattas et al., 2021;
Gilmore & Batchelor, 2021; Hutchison et al., 2022; Morsanyi et al.,
2018), we hypothesize that difficulties in ordinal processing among
children with persistent DD will be particularly pronounced for
ordered sequences that do not match the count-list compared to those
that do. If this is in fact the case, then it would suggest that difficulties
or delays in extending ordinal principles beyond the count-list to
include non-adjacent sequences of numbers is at minimum a clear
marker for dyscalculia and may have other repercussions for
understanding delays in children’s math processing more broadly.

Method

Participants

The sample was made up of 33 children (ages 9–13) who
participated in a larger longitudinal study described in detail
elsewhere (Archibald et al., 2013; Bugden & Ansari, 2016; Bugden
et al., 2021). The experimental design for the larger study is
summarized in Figure 1. Children were initially screened for
inclusion into the larger study in the fall of 2009 and were tested on a
series of mathematical and cognitive tasks each year thereafter until
the fall of 2013. In the present study, the primary measure of interest
was the ordinality task administered at the final time point.
Performance on the other mathematical and cognitive tasks at prior
time points was used to identify children with and without persistent
DD. Children were included in the present study if they met the
inclusion criteria for persistent dyscalculia and completed the
ordinality task at the final time point (n = 14) or if they were
typically performing and completed the ordering task at the final
time point (n = 19). Inclusion criteria for persistent dyscalculia was
based on persistent performance across a series of standardized
measures of mathematical ability, as well as a series of cognitive
tasks (intelligence, reading, working memory), across the testing
sessions.
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Identifying Children With Persistent DD

Children were initially recruited for the persistent DD group if they
obtained standard scores at least 1 SD below the mean (≤85) on both
the Math Fluency and Math Calculation subtests from the Woodcock
Johnson Tests of Achievement–III (Woodcock et al., 2001—see
Materials section) in the first three testing sessions (Fall 2009 and
Spring 2010, 2011). In these, and the following sessions, we allowed
exceptions for scores that deviated slightly from this strict cutoff,
provided scores were consistently low (see full list of exceptions
below).1 Children identified as having persistent DD had an average
standard math composite score of 73.06 across all testing sessions,
ranging from 64.83 to 81.75. Consistent with Diagnostic and
Statistical Manual of Mental Disorders, fifth edition criteria
for learning disorders (American Psychiatric Association, 2013),
children had to obtain standard intelligence scores above 70 across all
testing sessions. Fifteen childrenmet the criteria for persistent DD and
completed the ordinality task. One participant with persistent DDwas
removed for a high number of outlier trials (23.33%; see task
description for more details on what constituted an outlier trial). We
did not exclude participants who had chance performance overall for
the task (n = 2; average error rates of 51.67% and 48.33%) because
closer inspection of their performance did not reveal a pattern related
to purely guessing on the task (e.g., both participants showed high
accuracy in the adjacent in-order trials: 100% and 71.43%,
respectively).2 Overall, 14 children with persistent DD were included
in the final sample (four females;Mage = 12.35 years, SDage = 1.25).

Identifying Typically Performing Children

In line with the recruitment of children with persistent DD,
children were initially identified as “typically performing” if they

did not fall below 1 SD of the mean (>85) on the standardized tests
of math achievement across in the first three sessions (Fall 2009 and
Spring 2010, 2011). We allowed for some exceptions from this
threshold, provided math performance was relatively consistent and
that average standard scores across sessions were above 85 (see
exceptions described below3). One child was initially identified as
typically performing (standard of 96 and 105 for Math Fluency and
Math Calculation in Sessions 1 and 2, respectively), but excluded for
generally low math scores in the following sessions (average
standard score of 79.67 across these sessions, standard scores
ranging from 73 to 88). This child was not included in the DD group
because their math scores were not consistently low across sessions.
Overall, typically performing children had an average standard math
composite score of 95.13, ranging from 86.38 to 105.17. There were
a total of 19 typically performing children who also completed the
ordinality task (11 females; Mage 11.46 years, SDage = .97). We
found that children with persistent DD were significantly older than
typically performing children, t(31)= −2.33, p= .027, BF10= 2.45.
All typically performing children obtained persistent standard scores
above 85 on the Reading Fluency subtest for each session. Nearly,
all TP children (exception noted below4) also obtained persistent
standard scores above 85 on working memory composite scores5 for

Figure 1
The Data Collection Timeline for the Entire Study

Note. The ordinality task in the final testing session is analyzed in the
present study.

1 There was one child in the DD group who initially obtained a standard
score of 97 on the Math Fluency subtest during the first testing session but
obtained a standard score below 80 on both subtests for all remaining testing
sessions. In addition, three other children with DD obtained standard scores
greater than 85 during the first testing session (but not the second or third
sessions). Each of these subjects also obtained standard scores greater than
85 on math fluency in one (n = 2) or two (n = 1) of the fourth and fifth
sessions. These three participants obtained scores below 85 in all other
instances. In Session 4, there was one child who obtained a standard score of
94 and 86 on the Math Calculation and Math Fluency subtests, respectively,
but obtained a standard score below 84 in all other testing sessions. Last,
there were two children who obtained standard scores of 86 and 95 on the
Math Fluency subtest in Session 5, but both children obtained scores below
85 in all other testing session (including a score of 52 and 76, respectively, on
the Math Calculation subtest in Session 5). Within the final sample of
children with persistent DD, there were three children who did not participate
in the fourth testing session.

2 As a robustness test, analyses were also run without these participants
with near chance overall accuracy (∼50%). Broadly, findings are consistent
with those reported here.

3 One typically performing (TP) child received a standard score of 74 and
83 on Math Fluency in the first and fourth sessions, respectively, and a
standard score of 85 on Math Calculation in the third session. This child
obtained standard scores above 88 on the math measures in all other sessions.
Two TP children obtained a standard score of 85 in the third session (one on
the Math Fluency subtest and one on the Math Calculation subtest). These
two children also had standard scores below 85 in both theMath Fluency and
Math Calculation subtests in the fifth session but obtained standard scores
above 85 in all other instances. After the three initial sessions, six children
obtained a standard score between 79 to 85 on either or both the Math
Fluency or Math Calculation subtests in only one of the last two sessions
(Spring 2012 and Fall 2013) but obtained standard scores between 86 and
122 in all other instances. Three other TP children received a standard score
between 79 and 84 on either or both the Math Fluency or Math Calculation
subtests in both the fourth and fifth sessions but obtained standard scores
between 87 and 110 in all other instances. In the final sample of TP children,
five missed one or both math measures in Session 4.

4 One TP child had a working memory composite score of 84.5 in the
second session but had a working memory composite score of 106 in the
third session (the only other session with working memory data for this
participant).

5 Working memory scores calculated as mean standard score for verbal
and visuospatial working memory subtests.
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each session. As a result of our selection criteria, we also found that
our groups differed on measures of reading, intelligence, and verbal
working memory (see Supplemental Methods and Results section
for a full description of those measures and analyses).

Materials

Symbolic Ordinality Task

Children’s ability to recognize both adjacent (count-list) and
non-adjacent (noncount-list) ordered sequences as being in the correct
order was assessed using a computerized Symbolic Ordinality Task
that was administered at the final time point. In this task, participants
were presented with three single digit Arabic numerals horizontally
(e.g., 1–9) on the screen and were asked to indicate whether the
sequences were in the correct ascending order or not. For half the
trials, numbers were presented in correct ascending order (from left to
right, e.g., 2-3-4). In the remaining trials, numbers were presented in
mixed-order (e.g., 2-4-3). None of the trials were presented in correct
descending order. Responses were made by a button press on the
keyboard using letters “c” or “m”. The buttons indicating whether a
trial was in the correct order or not was counterbalanced across
participants. Numbers within a given sequence for both in-order and
mixed-order conditions were either adjacent (also known as close
distance; e.g., 1-2-3, 1-3-2) or non-adjacent (also referred to as far
distance; e.g., 2-4-6; 2-6-4). Distance was defined as the absolute
difference between the largest, middle, and smallest numbers within
the sequence (e.g., max–min/2). In the adjacent condition, all three
numbers were separated by a distance of one (e.g., 2-3-4, or 5-7-6 for
ordered and mixed conditions respectively). In the non-adjacent
distance condition, all three numbers were separated by a distance of
two (e.g., 2-4-6 or 6-2-4) or a distance of three (e.g., 1-4-7, or 4-1-7).
There were seven, five, and three combinations of triplets for
distance one, two, and three, respectively, for both in-order and
mixed-order trials (see Appendix B for a list of trials). Therefore,
distance two and three trials were collapsed into the non-adjacent
distance condition to achieve adequate power in each condition
bin. There were three blocks of 20 trials separated by a short
break. In each block, there were 10 ordered and 10 mixed-ordered
trials that were selected randomly from the trial list. Each of the
15 in-order sequences were administered twice, and there were
thirty mixed-order sequences each administered once. There was a
total of 60 trials.
All participants received the same instructions to complete the

task (see Appendix A for exact wording). Children first completed
10 practice trials, five ordered and five nonordered trials were
randomly selected from the list of trials that were in-order (15 possible
trials) and mixed-order (30 possible trials) where both adjacent
and non-adjacent sequences were administered. Participants received
corrective feedback for the practice trials only. Cronbach’s α was
calculated on reaction time data for the entire sample revealing high
internal consistency of the ordinality task, α = .93. We also evaluated
the split-half reliability of reaction time and error rates. Pearson
correlations revealed strong stability across matched halves for
reaction time, r(31) = .91, p < .001, BF10 = 6.05 × 10+10 and error
rates, r(31) = .84, p < .001, BF10 = 1.59 × 10+7. Trials less than
125 ms and greater than 10,000 ms were removed to ensure results
reflect actual processing of the stimuli. For the typically performing

participants, this meant no trials were removed. For the participants
with persistent DD, this resulted in 0.71% of trials being removed.

Mathematics Achievement

Children completed the Math Calculation and Math Fluency
subtests from the Woodcock Johnson Tests of Achievement–III
(Woodcock et al., 2001). TheMath Calculation task is a nonspeeded
assessment of general mathematical competence. Items begin
with simple single digit addition and subtraction problems and
progressively increase in difficulty. The Math Fluency task is a
speeded assessment of simple arithmetic fluency. Children had 3
min to answer as many single digit addition, subtraction, and
multiplication problems as they could without making any errors.

Procedure

The ordinality task was administered among a subset of other
computerized numerical tasks during the fifth testing session
(Bugden & Ansari, 2016), as well as the standardized math and
reading tests. Participants were tested individually in a quiet
laboratory testing room. Ethical approval was obtained by the
University of Western Ontario’s Health Sciences Research Ethics
Board. Consent and assent were obtained by the parents and
participants, respectively.

Analysis Plan

To assess if difficulties in ordinal processing among children with
persistent DD are particularly pronounced for ordered sequences
that do not match the count-list compared to those that do, we take a
stepwise approach. We assess error rate data (i.e., how many items
are incorrectly answered) because we predict that differences in
ordinal processing are primarily about extending the notion of what
is in-order beyond the count-list. In other words, we predict group
differences will appear in their response choices rather than their
response latency (see Supplemental Materials for reaction time
results). First, we run a 2 × 2 × 2 mixed model analysis of variance
(ANOVA), with group (persistent dyscalculia or typically perform-
ing) as a between-subjects factor, while trial type (in-order or mixed-
order) and distance (adjacent or non-adjacent) as within-subjects
factors. Here, a three-way interaction may support our hypothesis
that performance differences between groups are primarily on the
ordered non-adjacent trials. To specifically isolate if our hypothesis
that differences in ordinal processing are localized to in-order
non-adjacent trials, we run a 2× 2 ANOVAwith group and distance,
but only include the in-order trials. In this case, a significant
interaction between group and distance on in-order trials would be
expected if children with persistent DD specifically differ from
typically performing children on one type of trials. To rule out
that the three-way interaction is not also driven by difference in
processing the mixed-order trials, a similar 2 × 2 ANOVA is run
with group and distance, using only the mixed-order trials. Here, we
predict no interaction between group and distance, since mixed-
ordered trials are generally considered to be processed by magnitude
comparison processes, and not ordinal specific processes.We follow
2 × 2 ANOVA results with frequentist and Bayesian post hoc t tests
to assess specific groupwise differences. Bayesian analyses were
conducted in the statistical program, JASP (JASP Team, 2023), with
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default priors. Bayes factors are interpreted using the typical
guidelines (Faulkenberry et al., 2020; Jeffreys, 1961), such that
values between 1 and 3 (as well as between 0.33 and 1) constitute
anecdotal evidence. Values between 3 and 10, 10 and 30, 30 and
100, and greater than 100 are moderate, strong, very strong, and
extreme evidence, respectively.

Results

Combined across trial types and the two groups, the entire sample
(n = 33) made an average of 14.97% errors (SD = 12.82%) in the
ordering task. Amixed analysis of variance was conducted to examine
how performance rates varied as a function of whether sequences were
in correct and or incorrect order, as well as whether the sequence
matched or did not match the count-list between children with DD and
typically performing children. To ensure similar number of trials
were within each distance condition (adjacent and non-adjacent),
non-adjacent trials with a distance of two (e.g., 2-4-6) and three (e.g.,
1-4-7) were collapsed to form the non-adjacent condition. Consistent
with our prediction, the 2 × 2 × 2 mixed factorial ANOVA revealed a
significant three-way interaction, F(1, 31) = 8.16, p = .008, η2p = .21
(see Figure 2). All three main effects and two-way interactions were
also significant: distance, F(1, 31) = 23.76, p < .001, η2p = .43; group,
F(1, 31)= 10.14, p = .003, η2p = .25; order, F(1, 31) = 4.61, p = .040,
η2p = .13; Order × Group interaction, F(1, 31) = 4.87, p = .035, η2p =
.14; Distance × Group interaction, F(1, 31) = 13.72, p < .001, η2p =
.31; and Order × Distance interaction, F(1, 31) = 28.48, p < .001,
η2p = .48.
To uncover the locus of the three-way interaction and to directly

test our hypothesis that group differences are driven primarily by
performance on the in-order non-adjacent sequences, we conducted
a 2 distance (adjacent vs. non-adjacent) × 2 group (DD, TP) mixed
ANOVA using only in-order trials. There was a significant main
effect of distance, F(1, 31) = 37.70, p < .001, η2p = .55, whereby
error rates were greater for non-adjacent trials compared to adjacent
trials. There was also a main effect of group, such that children with
DD made more errors than TP children, F(1, 31) = 13.85, p < .001,
η2p = .31. Importantly, there was also a significant two-way
interaction between group and distance, F(1, 31) = 14.21, p < .001,
η2p = .31 Children with DD made significantly more errors than
typically performing children when ordered sequences did not
match the count-list (i.e., they were not adjacent) compared to when
they did, t(16.61) = −3.50, p = .003, Levene’s test of equality of
variance was violated, F(1, 31) = 8.96, p = .005, so equal variances
were not assumed, d = −1.37, BF10 = 55.89. However, there were
no significant differences in performance between groups when
determining if an adjacent ordered sequence was indeed in the
correct ascending order, t(31) = −1.09, p = .286, d = −.38, BF10 =
0.53. The Bayes factors constitute anecdotal evidence of an absence
of group differences on the in-order adjacent sequences. Conversely,
there is very strong Bayesian evidence that children with DD make
more errors on the in-order non-adjacent sequences compared to TP
children. Overall, error rates only differed between children with
persistent DD and typically performing children when the target
stimuli were in the correct ascending order but did not match the
count-list. Given that error rates are not normally distributed,
average task error rates: Shapiro–Wilk,W(33) = .86, p < .001; error
rates for in-order adjacent trials: Shapiro–Wilk, W(33) = .70, p <
.001; error rates for in-order non-adjacent trials: Shapiro–Wilk,

W(33) = .82, p < .001; error rates for mixed-order adjacent
trials: Shapiro–Wilk, W(33) = .69, p < .001; error rates for mixed-
order non-adjacent trials: Shapiro–Wilk, W(31) = .60, p < .001,
nonparametric statistics were conducted and are consistent with the
parametric analyses.6

To assess if differences between the DD and TP group were
localized to in-order trials, we ran a follow-up 2 (adjacent,
non-adjacent) × 2 (DD, TP) Mixed ANOVA using only the
mixed-order trials. Within the mixed-order trials, there was a
significant main effect of distance, whereby error rates were greater
for close distance trials compared to far distance trials across both
groups, F(1, 31) = 6.63, p = .015, η2p = .18, but there was no
significant interaction between group and distance, F(1, 31)= 0.49,
p = .491, η2p = .02; and critically there was no main effect of
group, F(1, 31) = 1.24, p = .273, η2p = .04. For completeness, we
also ran independent samples t tests for adjacent and non-adjacent
mixed-order sequences. Consistent with the ANOVA results,
children with DD did not differ from TP children on adjacent trials,
t(31) = −1.13, p = .269, d = −.40, BF10 = 0.54, or on non-adjacent
mixed-order trials, t(31) = −0.71, p = .485, d = −.0.25, BF10 =
0.41. The Bayes factors provide anecdotal evidence that the
DD group does not differ from the TP group on the mixed-order
adjacent or mixed-order non-adjacent sequences. Consistent with
our hypothesis, we found that children with DD did not differ in
error rates during the mixed-ordered trials compared to typically
performing controls.

Discussion

Recent work demonstrates that typically performing children
in kindergarten and early elementary school have difficulty with
judging the ordinality of sequences that are in-order but do not
match the typical count-list, such as 2-4-6 (Gilmore & Batchelor,
2021; Hutchison et al., 2022). Prior work also demonstrates that
children with DD may struggle with ordinal processing of numbers
in general (Attout et al., 2015; Attout &Majerus, 2015; De Visscher
et al., 2015; Kaufmann et al., 2009; Morsanyi et al., 2018; Rubinsten
& Sury; 2011), and there is preliminary evidence that this may
be especially pronounced in assessing ordinality of noncount-list
sequences (Morsanyi et al., 2018). In the present study, we sought to
explicitly test the hypothesis that children with DD struggle
primarily with extending notions of ordinality to sequences outside
of the count-list.

Prior research studies have used varying criteria to identify
children with DD. Often, only a single session is used to identify
children with poor math performance, despite the fact that math
performance varies over time (Mazzocco &Myers, 2003; Mazzocco
& Räsänen, 2013). To address this limitation, we tested our
hypothesis in a sample of children who demonstrated persistently
low math achievement scores across five different time points over a
4-year span. Results showed that children with persistent DD made
more errors, compared to typically develop children, specifically
on ordered, noncount-list trials (e.g., 2-4-6). We found no group

6 Mann–Whitney U test for independent samples revealed that there was a
significant group difference for only the in-order non-adjacent trials (p =
.003). There were no significant group differences for in-order adjacent trials
(p = .163), mixed-order adjacent (p = .627) and mixed-order non-adjacent
trials (p = .900).
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differences on any of the other ordering trial-types. This finding is
thus consistent with the hypothesis that ordinal processing deficits
in children with DD primarily manifest in their difficulty with
extending notions of ordinality beyond count-list sequences.
It is important to clarify that our argument is not that children with

DD are the only individuals who struggle to process the numerical
order of noncount-list sequences. Indeed, in this same data set, we
saw evidence of lower performance on ordered, noncount-list trials
(e.g., 2-4-6) in typically performing children as well (compared to
ordered, count-list trials; see Figure 2). Prior work has shown that
younger, typically performing children struggle to verify that
noncount-list sequences like 2-4-6 are in-order (Gilmore &
Batchelor, 2021; Hutchison et al., 2022). Highly numerate adults
also tend to show less efficient performance on noncount-list trials
than count-list trials (Franklin et al., 2009; Lyons & Beilock, 2013),
and recent work suggests this is primarily driven by poor efficiency
on noncount-list trials as opposed to increased efficiency on count-
list trials (Gattas et al., 2021). Hence, our view of this literature is
that young children struggle to extend their concept of numerical
order beyond the count-list. This early developmental struggle
continues to manifest in reduced efficiency in adults when
processing the ordinality of sequences like 2-4-6. Our results
suggest that school-aged children with dyscalculia have difficulties
extending one’s notion of ordinality to ordered sequences outside of
the count-list. This difficulty is faced by many children and may be
simply more acute and appear as a significant delay in children
with dyscalculia (for congruent findings, see Morsanyi et al., 2018).

The difficulty that children with DD show on order non-adjacent
sequences may be considered similar to the difficulty that typically
performing children show when they start formal schooling
(Hutchison et al., 2022). In this way, our results may be highlighting
that children with DD have a developmental delay for extending
ideas of ordinality beyond the count-list. An interesting theoretical
and practical question is thus why children with DD show delays in
noncount-list processing, and what utility may lie in interventions
aimed at reversing these delays.

With respect to underlying mechanisms, there are several
possibilities. One possibility is that the count-list is a procedure
that can be learned primarily via repetition (Wynn, 1992), increasing
its automaticity and decreasing its sensitivity to available working
memory resources (Ashcraft et al., 1992; Tronsky, 2005). In this
view, learning and use of the count-list, unlike many other math skills,
may be relatively insulated from challenges to working memory
capacity that children with DD may experience (Attout & Majerus,
2015;Menon, 2016). As such, childrenwithDDmay bemore inclined
to fall back on more routinized techniques that are less susceptible to
disruption, like counting. This in turn may lead to a stronger emphasis
on the count-list, making it more difficult to forgo the count-list as
one’s primary anchor for processing numerical order.

A second possibility, not mutually exclusive with the first, places
the focus on the moment when children with DD must essentially
inhibit the inclination to use the integer count-list as their primary
means of evaluating numerical order. In this view, a sequence like
2-4-6 does not match the count-list, and to identify it as in-order,

Figure 2
The Average Proportion of Errors Plotted for Adjacent (e.g., 1-2-3; 1-3-2) and Non-Adjacent (e.g., 1-3-5;
3-5-1) Trials Within the In-Order and Mixed-Order Conditions

Note. The TP group is shown in blue, while the DD group is shown in orange. Average scores are shown with the open
diamond point with raw data points in the background. Error bars denote standard error. DD= developmental dyscalculia;
TP = typically performing. See the online article for the color version of this figure.
** p < .01.
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one must first inhibit the inclination to say “not in-order” because it
does not match the count-list (Gattas et al., 2021). If children with
dyscalculia struggle with inhibiting prepotent responses, especially
in the numerical domain (Devine et al., 2013; Szucs et al., 2013),
this may lead to particular difficulties in inhibiting the immediate
response that 2-4-6 is not in-order. In this respect, the mechanism
that explains why children with dyscalculia struggle to go beyond
the count-list in ordinal processing is much the same as that which
explains their difficulty with other counterintuitive numerical
ideas (e.g., 1

2 >
1
3; Mazzocco & Räsänen, 2013). Notably, we

encourage caution about overinterpreting domain-general ante-
cedents as direct mechanisms for differences in children with
DD. For instance, Wilkey et al. (2020) showed that number-
specific executive functioning was associated with DD and math
skills while nonnumerical executive functioning was not. This is
in line with the notion that executive function skills, such as
working memory and inhibition, interplay with numerical skills
and play a more context specific role in math development (Bugden
& Ansari, 2016; Coolen et al., 2021; Wilkey et al., 2020). As such,
executive-functioning skills may not be a general cause, but perhaps
a biproduct as general cognitive and numerical skills support each
other across development.
A third possibility is that children with DD primarily struggle

with more abstract numerical concepts in general (Butterworth,
2005, 2011). Numerical order is an especially powerful numerical
concept precisely because it allows one to reason about relations
between numbers without only oblique reference to their underlying
magnitudes (Lyons et al., 2016). For instance, the rank order of
ffiffiffi

5
p

, e, π is 1-2-3, and the rank order of 2, 4, 6 is also 1-2-3, meaning
the values e and 4 both occupy the same ordinal position, 2, even
though the actual cardinal value of 2 is both contained in the second
set and numerically less than all three of the values in the first set.
Indeed, it is this insight that makes working with more exotic
numbers that are difficult to ground in concrete experience (very
large numbers, irrational numbers, negative numbers, etc.) far more
tractable (Coles & Sinclair, 2018; Peano, 1889). While mathemati-
cally powerful, this sort of abstraction can also be conceptually
challenging even for typically performing individuals. If children
with DD find even simple versions of this sort of abstraction
especially difficult (Butterworth, 2005, 2011), then the idea that
number sequences that do not match the count-list can still be in-
order may be one manifestation of a broader struggle with numerical
abstraction.
On a practical level, it is worth asking why deficits in ordinal

processing matter. Ordinal verification performance is highly
predictive of other types of math skills, such as arithmetic (Lyons et
al., 2016), although it is important to note evidence for causality is
mixed (Devlin et al., 2022). Perhaps more to the point, ordinal
ranking is a ubiquitous aspect of many situations, from academic
achievement to sports to online product rankings. A flexible and
accurate understanding of how numerical ranking works is thus of
basic practical value in its own right. Further, as noted above,
ordinality is a foundational aspect of several types of more abstract
mathematical thinking, which many students will encounter as they
advance through the mathematics curriculum. Hence, there are
several reasons why the specific sort of ordinal processing deficit
shown here for children with dyscalculia is worthy of researchers’
and educators’ attention.

To that end, while specific interventions are beyond the scope of
the current article, based on the discussion of possible mechanisms
described above, we can make two predictions regarding interven-
tion efficacy. In the first case, if the primary issue children with DD
face is in inhibiting a highly routinized procedure (reciting the
count-list), then the most effective interventions would likely
involve substantial, repeated practice with counterexamples. Over
time, repeated exposure to counterexamples can weaken over-
learned associative links (Izquierdo et al., 2017; Yaple & Yu, 2019),
a technique that could be used to increase flexibility in the link
between the count-list and ordinality. Similarly, if children with DD
struggle with inhibitory control (Devine et al., 2013; Szucs et al.,
2013), then one may need to rely more on procedural mechanisms
that build up positive associations with alternative ordinal examples
(e.g., 2-4-6), which in turn will obviate the need for inhibitory
mechanisms over time (Ashcraft, 1992; Izquierdo et al., 2017). In a
second, alternative scenario, if the primary issue children with DD
face is in understanding abstract concepts (Butterworth, 2005,
2011), then additional conceptual scaffolding may be the most
effective form of intervention. For instance, combining manipula-
tives and use of a visual–spatial number-line has been effective in
other contexts (Siegler & Ramani, 2009; Xu & LeFevre, 2016). A
similar approach that also involves explicit instruction about the
difference between magnitude and order could be useful in
grounding this idea in more concrete experience.

Limitations

One key limitation of this study is its relatively small sample-size.
This is balanced by our ability to make a strong claim that the
children with DD in our sample are consistently so, showing
persistent math deficits over multiple measurements and an extended
developmental period. That said, it is important to note, that our
estimates of the relevant effect-sizes are likely to carry a high degree
of error and in particular may be over-estimated. As such, we
encourage caution against overinterpreting the reported effect-sizes
and their exact value should be treated only as a rough guide for
what to expect in future studies. A second limitation is that we used
noncontinuous groups, essentially comparing a group on the extreme
end of the distribution with a group roughly in the middle of the
distribution. We did so because our focus was on characterizing
ordinal performance in a group of children with unambiguously
persistentmath deficits. However, our approach should be understood
as only limited snapshot of the overall distribution, which, as others
have argued, is perhaps best thought of as continuous.

Conclusion

Ordinal number processing skills are important for children and
adults (e.g., Goffin & Ansari, 2016; Lyons & Ansari, 2015). Recent
research demonstrates that children have difficulty with judging the
ordinality of sequences that are in-order but do not match the typical
count-list (i.e., in-order non-adjacent sequences, such as 2-4-6;
Hutchison et al., 2022). Notably, children with dyscalculia may
show a similar pattern of behavior. In the present study, we sought to
explicitly test the hypothesis that children with DD struggle mainly
with extending notions of ordinality to sequences outside of the
count-list. Results demonstrate that children with persistent DD
make more errors, compared to typically develop children, but only
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when verifying the order of in-order non-adjacent trials (2-4-6).
Overall, our results suggest that ordinal processing skills are lower
in children with DD, and that this characteristic appears primarily in
extending notions of ordinality beyond adjacent sequences.

Résumé

Les compétences de traitement des nombres ordinaux sont
importantes tant chez l’enfant que chez l’adulte. Des travaux
récents démontrent que les enfants éprouvent des difficultés à juger
l’ordinalité des séquences ordonnées, mais qui sortent du cadre de
décompte habituel (p. ex., des séquences de nombres dans l’ordre,
mais non adjacents, comme 2-4-6, etc.) Les données probantes
restreintes dans la documentation donnent à penser que les enfants
qui éprouvent une dyscalculie présentent des comportements
analogues. Dans la présente étude, nous voulions examiner
explicitement l’hypothèse selon laquelle les enfants présentant une
dyscalculie développementale éprouvent avant tout des difficultés à
appliquer les notions de l’ordinalité à des séquences qui sortent du
cadre de décompte habituel. Nous mettons donc cette hypothèse à
l’épreuve sur un échantillon d’enfants présentant une dyscalculie
développementale persistante et un groupe de référence composé
d’enfants possédant des capacités de calcul « habituelles ». Les deux
groupes devaient effectuer une tâche de jugement de l’ordinalité, où
ils devaient déterminer si des séquences de triplets étaient ordonnées
(3-4-5) ou pas (3-5-4, 2-6-4, etc.) Les résultats de l’étude cadrent
avec nos prévisions et démontrent que les enfants qui présentent une
dyscalculie développementale persistante font plus d’erreurs
comparativement aux enfants possédant des capacités de calcul
habituelles, mais seulement dans les essais ordinaux non adjacents
(p. ex., 2-4-6). Dans l’ensemble, ces constatations donnent à penser
qu’il y a une défaillance des capacités de traitement de l’ordinalité
chez les enfants qui présentent une dyscalculie développementale, et
que ce trait se manifeste principalement lorsque vient le temps
d’appliquer les notions de l’ordinalité au-delà des séquences
adjacentes.

Mots-clés : ordinalité, nombre, dyscalculie, cognition numérique
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Appendix A

Ordering Task Instructions

“Welcome to the Order Task!
Your job is to decide whether three numbers are all in the right order.
For example:
1 2 3
are in order.
For example:
1 3 2
and
2 1 3
are NOT in order.
Press space to continue.”
“When the three numbers are in order, you should press the [correct order button*] key.
The examples below are all in order.
1 2 3
2 4 6
3 6 9
6 7 8
In every case, you should press the [correct order button*] key.
Press [correct order button] now to continue.”
“When the three numbers are NOT in order, you should press the [incorrect order button*] key.
The examples below are all in the wrong order.
2 1 3
2 6 4
6 3 9
6 8 7
In every case, you should press the [incorrect order button*] key.
Press [incorrect order button*] now to continue.”
“If you have any questions, please ask the experimenter now.
In a moment, you will have a chance to practice the task.
Press the button that means NOT IN ORDER to continue.”
“The next block of trials is about to begin.
A block cannot be paused, so make sure that you are completely ready.
Reminder:
[correct order button*] means IN ORDER.
[incorrect order button*] means NOT in order.
Place your fingers over the [correct order button*] and [incorrect order button*] keys now.
Press either key to begin.”**
“The practice session is over.
The main part of the task will begin in a moment.
You will no longer be told whether your response was correct or not.
Please ask the experimenter now if you have any questions.
Press space to continue.”
*Note. The correct/incorrect order button were randomly assigned as “M” or “V” for each subject.
**Note. The next block instructions were presented before the practice and then again before each of the three main blocks.
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Appendix B

Ordering Task Trials

Condition Left Middle Right Distance

In-order adjacent 1 2 3 1
In-order adjacent 2 3 4 1
In-order adjacent 3 4 5 1
In-order adjacent 4 5 6 1
In-order adjacent 5 6 7 1
In-order adjacent 6 7 8 1
In-order adjacent 7 8 9 1
In-order adjacent 1 2 3 1
In-order adjacent 2 3 4 1
In-order adjacent 3 4 5 1
In-order adjacent 4 5 6 1
In-order adjacent 5 6 7 1
In-order adjacent 6 7 8 1
In-order adjacent 7 8 9 1
In-order non-adjacent 1 3 5 2
In-order non-adjacent 2 4 6 2
In-order non-adjacent 3 5 7 2
In-order non-adjacent 4 6 8 2
In-order non-adjacent 5 7 9 2
In-order non-adjacent 1 3 5 2
In-order non-adjacent 2 4 6 2
In-order non-adjacent 3 5 7 2
In-order non-adjacent 4 6 8 2
In-order non-adjacent 5 7 9 2
In-order non-adjacent 1 4 7 3
In-order non-adjacent 2 5 8 3
In-order non-adjacent 3 6 9 3
In-order non-adjacent 1 4 7 3
In-order non-adjacent 2 5 8 3
In-order non-adjacent 3 6 9 3
Mixed-order adjacent 2 1 3 1
Mixed-order adjacent 3 2 4 1
Mixed-order adjacent 4 3 5 1
Mixed-order adjacent 5 4 6 1
Mixed-order adjacent 6 5 7 1
Mixed-order adjacent 7 6 8 1
Mixed-order adjacent 8 7 9 1
Mixed-order adjacent 1 3 2 1
Mixed-order adjacent 2 4 3 1
Mixed-order adjacent 3 5 4 1
Mixed-order adjacent 4 6 5 1
Mixed-order adjacent 5 7 6 1
Mixed-order adjacent 6 8 7 1
Mixed-order adjacent 7 9 8 1
Mixed-order non-adjacent 3 1 5 2
Mixed-order non-adjacent 4 2 6 2
Mixed-order non-adjacent 5 3 7 2
Mixed-order non-adjacent 6 4 8 2
Mixed-order non-adjacent 7 5 9 2
Mixed-order non-adjacent 1 5 3 2
Mixed-order non-adjacent 2 6 4 2
Mixed-order non-adjacent 3 7 5 2
Mixed-order non-adjacent 4 8 6 2
Mixed-order non-adjacent 5 9 7 2
Mixed-order non-adjacent 4 1 7 3
Mixed-order non-adjacent 5 2 8 3
Mixed-order non-adjacent 6 3 9 3
Mixed-order non-adjacent 1 7 5 3
Mixed-order non-adjacent 2 8 6 3
Mixed-order non-adjacent 3 9 9 3
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