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One of the most robust relations in cognition is that between spatial and mathematical reasoning. One
important question is whether this relation is domain general or if specific relations exist between
performance on different types of spatial tasks and performance on different types of mathematical
tasks. In this study, we explore unique relations between performance on five spatial tasks and
five mathematical tasks. An exploratory factor analysis conducted on Data Set 1 (N = 391) yielded a
two-factor model, one spatial factor and one mathematical factor with significant cross-domain factor
loadings. The general two-factor model structure was replicated in a confirmatory factor analysis
conducted in a separate data set (N = 364) but the strength of the factor loadings differed by task.
Multidimensional scaling and network-based analyses conducted on the combined data sets reveal one
spatial cluster, with a central node and one more tightly interconnected mathematical cluster. Both
clusters were interconnected via the math task assessing geometry and spatial sense. The unique links
identified with the network-based analysis are representative of a “small-world network.” These results
have theoretical implications for our understanding of the spatial–mathematical relation and practical
implications for our understanding of the limitations of transfer between spatial training paradigms and
mathematical tasks.

Public Significance Statement
We investigated unique relations between five different mathematical tasks and five different spatial tasks
in two different data sets of undergraduate students. We found that the mathematical tasks were strongly
interconnected forming a tight group and the spatial taskswere also interconnected, forming another group.
Both groups were connected via a geometry task that had unique relations with both the mathematical and
spatial tasks. The findings indicate specific relations between the mathematical and spatial domains.

Keywords: mathematical reasoning, spatial reasoning, small-world networks

It has been argued that one of the most robust relations in cognition
and learning is that between spatial reasoning and mathematical
reasoning (Cheng & Mix, 2014; Hawes & Ansari, 2020; Mix &
Cheng, 2012; Mix et al., 2016; Tosto et al., 2014). Spatial reasoning
refers to mentally visualizing, rotating, and transforming spatial and
visual information (Gardner, 1993). It is generally found that poor
performance on tasks thought to require spatial reasoning is associated
with weaker performance on tasks thought to require mathematical
reasoning (Rotzer et al., 2009). This relation has been observed
in many stages of development, from children to adolescents and
adults (Geary et al., 2021; Geer et al., 2019; Gilligan et al., 2019;
Haciomeroglu, 2016; Rohde, 2008; Sewell, 2008; Webb et al., 2007).

Further, evidence of a potential causal relation between spatial
reasoning and mathematical reasoning can be seen in a meta-analysis
by Hawes et al. (2022), in which it was found that the average effect
size of spatial training on mathematics was 0.28 (Hedges’s g) relative
to control conditions, with age serving as a significant moderator.
Important to note, however, is the fact that there are inconsistent
findings within the literature wherein, in some cases, spatial training
transfers to mathematics reasoning, and in some cases, it does not (for
a review, see Hawes et al., 2022).

Although the general relation between performance on spatial
tasks and performance on mathematical tasks is well established,
there are many questions regarding the nature of this relation.
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Notably, we have not yet determined why and how spatial reasoning
and mathematical reasoning are related, and whether these relations
are domain general or domain specific (Hawes & Ansari, 2020). In
other words, it is unknownwhether spatial reasoning in general relates
to mathematical reasoning in general due to some type of shared
underlying representation or processing, or whether specific types
of spatial reasoning are related to specific types of mathematical
reasoning and not to other types of mathematical reasoning. Within
the more domain-general argument, one proposed explanation for
why these two general constructs are related revolves around the
theory that numbers are spatially represented (Hawes&Ansari, 2020;
Mix & Cheng, 2012). Indeed, many researchers believe that numbers
are represented in the mind along a mental number line (akin to a
ruler) and that this representation is inherently visuospatial in nature.
Thus, numerical and mathematical reasoning is believed to be related
to spatial reasoning via recourse to the mental number line (Restle,
1970). Other researchers within the domain-general camp theorize
that spatial processes are recruited for solving mathematical tasks
(e.g., Presmeg, 2006; Rasmussen & Bisanz, 2005). Consistent with
this claim, performing mathematical tasks and spatial tasks activate
similar neural circuits, suggesting the recruitment of some of the same
underlying cognitive processes (Hubbard et al., 2005; Walsh, 2003).
In contrast, it may be the case that relations between spatial

reasoning and mathematical reasoning are not domain general but
rather that unique relations exist between specific spatial skills and
specific mathematical skills (e.g., Bailey, 2017; Caviola et al., 2012;
Robert & Lefevre, 2013; Trbovich & LeFevre, 2003). For example,
visual–spatial working memory (WM) demands vary depending
on the layout of an addition problem (horizontal vs. vertical; Caviola
et al., 2012; Trbovich & LeFevre, 2003) and the difficulty of
substructions (small-operand vs. large-operand; Robert & Lefevre,
2013). This domain-specific hypothesis may explain the inconsistent
findings within the spatial training literature. If the relations between
space and math are domain general, then one would expect to see the
transfer as a function of training. However, if there are unique
relations between certain types of spatial reasoning and certain types
of mathematical reasoning, and researchers opt to train one type of
spatial reasoning and test for transfer to one type of mathematical
reasoning that happens to be unrelated, then one would not expect to
see transfer.
The domain-specific hypothesis hinges on the fact that within the

domains of both space and math, there are different tasks that are
believed to be indexing different types of spatial and mathematical
reasoning. This heterogeneity within each domain makes under-
standing the link between math and space complex. Adding even
more complexity, there remains debate within the field regarding
how to divide, define, and name the subcategories of spatial
reasoning (Carroll, 1993; Höffler, 2010; Linn & Petersen, 1985; Mix
& Cheng, 2012; Mix et al., 2018; Uttal et al., 2013). Similarly, there
are multiple strands of mathematics that likely index different types
of mathematical reasoning (Gilmore, 2023; Hjelte et al., 2020).
Despite this, in the literature examining the relations between spatial
reasoning and mathematical reasoning, different categories of spatial
reasoning and different categories of mathematical reasoning are
often used interchangeably and simply discussed under the umbrella
of “spatial reasoning” and “mathematics,” respectively.
In this article, we take the stance that spatial reasoning and

mathematical reasoning both represent heterogeneous categories,
and we test the hypothesis that the relations between these categories

are domain specific. Below we discuss the existing studies that have
led us to this hypothesis.

Correlational Studies

In this overview, we synthesize correlational studies that investigate
the relations between specific spatial skills and mathematical skills
(see Mix & Cheng, 2012, for a thorough review). These studies often
involve children and adolescents as well as adults, and findings
across age groups are not sufficiently isolated to permit age-specific
conclusions.We categorize these relations based on the type of spatial
skill assessed for ease of presentation.

Spatial Visualization

Performance on spatial visualization tasks, which require mental
transformation of 2D and 3D objects, is related to performance on
several types of mathematics. For example, performance on the
Block Design task is positively related to performance on arithmetic
word problems in 12-year-olds (Hegarty & Kozhevnikov, 1999) and
on a counting task in 6-year-olds (Kyttälä et al., 2003). In Harris et al.
(2021), performance on the Spatial Visualization subtest of the Spatial
Reasoning Instrument was a positive predictor of fifth graders’ (10- to
12-year-olds) performance on geometry and measurement questions
and number sense questions. Harris et al. (2021) also found the
same pattern in eighth graders (13- to 14-year-olds) with performance
measured with a paper-folding task. The positive relation between
performance on spatial visualization tasks and performance on a
variety ofmathematical tasks is observed in kindergarteners up to high
school students (Haciomeroglu, 2016; Harris et al., 2021; Lachance &
Mazzocco, 2006; Mazzocco & Myers, 2003; Sherman, 1980).

Mental Rotation

Performance onmental rotation tasks, which require individuals to
mentally rotate objects, a substrand of spatial visualization, has also
been shown to correlate positively with performance in geometry,
word problems, and arithmetic tasks, as well as general standardized
math tests in adults and adolescents (Casey et al., 1995; Delgado &
Prieto, 2004; Gilligan et al., 2019; Harris et al., 2021; Kyttälä &
Lehto, 2008; Lombardi et al., 2019; Moè, 2018; Reuhkala, 2001;
van Tetering et al., 2019; L. Wang & Carr, 2020; Weckbacher &
Okamoto, 2014). More recently, the relationship between perfor-
mance on mental rotation tasks and arithmetic as well as overall
mathematics tasks has also been found in children (Gilligan et al.,
2019; Lombardi et al., 2019; Moè, 2018; van Tetering et al., 2019),
although this relation is not always found for every age group
(Gilligan et al., 2019; Moè, 2018).

Disembedding

Research exploring the relation between disembedding perfor-
mance, which requires finding figures in a distracting background,
and mathematics performance has found that there were significant
but weak relations between disembedding performance and perfor-
mance on math tests, number line estimation tasks, and approximate
number sense tasks in children (Gilligan et al., 2019; Mazzocco &
Myers, 2003). The relation between performance on disembedding
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tasks and mathematical tasks does not seem to have been studied in
adolescents or adults.

Perspective-Taking

Perspective-taking performance has been previously related to
geometry and measurement tasks, number sense tasks, and
number line estimation tasks, but again only in children (Cameron
et al., 2019; Frick, 2019; Gilligan et al., 2019; Harris et al., 2021;
Kulp, 1999; Kurdek & Sinclair, 2001; Nesbitt et al., 2019; Sortor
& Kulp, 2003). For example, Harris et al. (2021) found that
performance on the Spatial Orientation subtest of the Spatial
Reasoning Instrument was positively correlated with performance
on geometry and measurement questions and number sense
questions in fifth and eighth graders. As with disembedding, the
relation between performance on perspective-taking tasks and
mathematical tasks does not seem to have been studied in
adolescents or adults.

Navigation

Navigation, which refers to the ability to navigate through
environments, has recently been identified as an important subcom-
ponent of spatial reasoning (Ferguson et al., 2015; Lyons et al., 2018;
Sokolowski et al., 2019). Navigation was one of the three subcom-
ponents of spatial reasoning identified by the factor analyses used to
create a scale measuring anxiety about tasks involving spatial
reasoning (Lyons et al., 2018). Navigation tasks are also related to the
concept of sense of direction and large-scale spatial skills, as found in
the Santa Barbara Sense-of-Direction Scale (Hegarty et al., 2002),
which measures environmental spatial abilities. These studies have
explored the relation between navigation performance and math
anxiety but no studies to our knowledge have yet to explore the relation
between navigation performance and mathematics performance.

Factor Analyses

Another method of exploring relations between different spatial
and mathematics tasks is to use methods that incorporate many tasks
within the same analysis, such as factor analysis. Mix et al. (2016)
had over 800 children from kindergarten (Mage = 6.04), third grade
(Mage = 9.04), and sixth grade (Mage = 11.74) complete a series of
mathematical and spatial tasks. Using cross-domain factor analysis
and cross-domain multiple regression analyses, they found that the
tasks converged into two factors, one mostly spatial and one mostly
mathematical. However, the cross-domain loadings obtained in the
factor analyses were not consistent across age groups. A possible
explanation the authors suggest for their results is the “novel versus
familiar hypothesis” (Mix et al., 2016). In this hypothesis, spatial
reasoning is more important in learning and completing novel math
problems than familiar ones. Indeed, the math tasks that cross-
loaded onto the spatial factor, calculation, fractions, and algebra are
new and challenging concepts for kindergarteners, third graders, and
sixth graders, respectively. Interestingly, the authors replicated this
study (Mix et al., 2017), and although the general two-factor model
(one spatial, one mathematical) and all within-domain factor
loadings replicated, not all cross-domain loadings were the same in
this second wave of participants. The authors determined that
“cross-domain loadings, even those that were replicated, appear

much more fragile and context-specific than the within-domain
loadings” (Mix et al., 2017, p. 478).

These results may be because relations between different types of
spatial and mathematical tasks in elementary school children are
variable. It is unclear, however, if these relations stabilize throughout
development and are more stable in adults. To our knowledge, no
research has taken a parallel approach in adults wherein the relations
between performance on multiple spatial tasks and multiple math
tasks have been assessed within participants. Against this background,
we sought to identify specific relations between spatial and mathe-
matical reasoning tasks in undergraduate students and determine if
these relations are consistent across two different data sets.

The Present Study

The objective of the present study is to extend our understanding
of the relationship between mathematical and spatial reasoning.
More specifically, we are interested in identifying specific relations
between performance on five different spatial andmathematical tasks
in undergraduate students. First, we will identify these relations by
conducting cross-domain factor analyses on two separate data sets.
Given some of the inconsistent findings in the literature on the latent
structure between mathematical and spatial reasoning (e.g., Mix
et al., 2017), we felt it prudent to obtain two independent data sets
and to test the replicability of our findings. In the second data set, we
included a task that indexes WM capacity (i.e., the backward letter
span task) as a control variable. Given the characterization of WM as
a “dissociable cognitive skill with unique links to learning outcomes”
(Alloway & Alloway, 2008, p. 2) and the findings that WM is a
significant predictor of academic achievement (Alloway & Alloway,
2010), we included it as a domain-general measure to help control for
the possibility that people who are strong in one academic area (e.g.,
math) are simply likely to be strong in all academic areas. In both
data sets, undergraduate participants completed five spatial tasks and
five sets of math questions (each set from a different strand of
mathematics). Second, we then performed a second set of analyses,
multidimensional scaling (MDS), and network-based analyses on
both data sets combined to determine whether there was support for
the factor analyses and help visualize the findings.

We have taken three relatively new approaches to exploring this
question. First, we opted to use the math strands outlined in the
mathematics public curriculum in the geographic region in which
the study herein was conducted because we felt that this would
have the greatest chance of representing the types of mathematics
most commonly encountered (at least during schooling years) by the
participants in this study. The Ontario mathematics curriculum
Grades 1–8 (Ontario Ministry of Education, 2005) divides math
knowledge into five strands: (a) data management and probability,
(b) measurement, (c) number sense and numeration, (d) geometry
and spatial sense, and (e) algebra. This approach is different from
previous studies in that most studies exploring the relation between
mathematical and spatial reasoning use basic arithmetic tasks or
simply use one or two general math tasks that do not distinguish
between the different types of math taught in schools (e.g., Cameron
et al., 2019; Nesbitt et al., 2019; L. Wang & Carr, 2020). Second,
selecting strands from the education system is an ecologically valid
approach and will make our findings more directly applicable to
real-world situations and education as the math strands selected are
the ones commonly used in schools. The third novel approach
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consists of using a network-based analysis approach (in addition to
classic factor analysis) to better visualize and draw more detailed
inferences about the relations between specific math and spatial
tasks. Behavioural sciences are replete with theoretical frameworks
in which the structure of associative networks is of central interest,
and mapping these associative networks in graphical form is likely
to be of significant value (J. Wang et al., 2010; Watts & Strogatz,
1998). We believe that to be the case here to map the relations
between tasks in the spatial and mathematical domains.
Taken together, the results of this study have both theoretical

implications for our understanding of the space–math relation, whether
it is domain general or domain specific, and practical implications for
our understanding of the limitations of transfer between spatial training
paradigms and mathematical tasks.
Because the relation between mathematics and spatial reasoning

has been found throughout development (e.g., Geary et al., 2021;
Haciomeroglu, 2016; Rohde, 2008; Sewell, 2008; Webb et al.,
2007), including adulthood, we anticipate the general findings from
Mix et al. (2016, 2017) to be replicated in the present data set. More
specifically, we expect to find two factors, one spatial and one
mathematical, when performing the cross-domain factor analyses,
with all tasks loading onto their respective domains. Based on the
studies discussed earlier, we predict that (a) the tasks measuring
spatial visualization and mental rotation performance will both be
related to the math domain and will be uniquely related to the
geometry and spatial sense and the number sense and numeration
strands, (b) disembeddingwill not be related to the math domain and
will not be uniquely related to any strand of math, (c) perspective-
taking will be related to the math domain and uniquely related to the
geometry and spatial sense, the measurements, and the number
sense and numeration strands. We do not have any predictions for
the navigation spatial task because its correlation to mathematics
performance has not yet been studied.

Method

Participants Data Set 1

Four hundred twenty-five participants were recruited from an
undergraduate student research pool. The pool is a research
participation programme designed to allow students in introductory
psychology courses to participate in research to receive credits
towards the course. The students received 1 credit for their
participation in this 1-hr long study, as per institutional guidelines.
After reading the consent form, six students did not consent to
participate, three participants withdrew from the study, and
25 participants were excluded from the analysis after the data
cleaning procedure (see the Scoring section, for details). Thus, in
total, 391 students (121 identified asmales; 265 identified as females;
two identified “other” as their gender; and three did not provide their
gender) were included in the analyses. Students who did not consent
still received course credit as per local Research Ethics Board
regulations. Of the participants included in the analyses, 57%
identified English and 15.1% identified French as their first language,
0.8% identified both French and English, and 23.3% identified
another language, while 3.8% did not provide this information. The
mean age of the participants is 19.3 years (seven participants did not
provide their age). Note that we use the term “gender” here rather
than “sex” as students were asked to identify their gender by

selecting “female,” “male,” or “other” in the demographic portion of
the study. Data Set 1 has been previously used in other articles
(Daker et al., 2022; Delage et al., 2022), but the research question
and analyses included in this article are novel.

Participants Data Set 2

Undergraduate students were recruited through the same
student research pool from Study 1, at the University of Ottawa.
To be eligible for this study, participants needed to have not been
participants in Data Set 1. Five hundred forty-seven responses were
recorded. Of those responses, seven did not consent to participate,
79 withdrew from the study (did not complete the study or did not
provide a response for an entire task), and 36 were identified as a
double response (i.e., participated in the study twice). Double
responses were identified by the student pool identification code of
each student collected before the consent form. Only the first
completed response for each identification code was retained, and all
subsequent responses were identified as double responses and were
discarded before analyses were conducted. Finally, 56 participants
were excluded from the analysis after the data cleaning procedure
(see the Scoring section, for details). After these exclusions,
364 participants remained (117 identified as males; 241 identified as
females; four identified as other; two did not respond to the gender
question) and were included in the analyses. Of those included in the
analysis, 54.2% identified English and 17.1% identified French as
their first language and 28.7% identified another language. The mean
age of the participants was 19.9 years (note that seven individuals did
not provide age information).

Procedure Data Set 1

The research presented herein received Research Ethics Board
approval from the University of Ottawa’s Office of Research Ethics.
All research was conducted following ethical research guidelines.
Data collection took place during the 2019 fall semester, and the
study was approximately 1 hr long. All tasks and questionnaires
were completed via Qualtrics, in English. While an online platform
was used to administer the tasks, data collection was nonetheless
completed in person. When participants arrived at the lab, they were
brought to a testing station that included a computer, a pencil, a
paper, and a calculator. Participants were first asked to complete the
consent form on the Qualtrics survey, and once informed consent
was obtained, the study commenced. The math questions were
completed first, followed by the spatial tasks and the demographic
questionnaire.1

Procedure Data Set 2

The procedure for Data Set 2 was identical to Data Set 1 with the
following exceptions. Data collection took place during the 2020
summer and fall semesters. Participants completed the study remotely
due to the COVID-19 pandemic. Participants were instructed that
they needed a computer, a pencil, a paper, a calculator, and a quiet
room to participate in the study. Participants were first asked to

1 Participants also completed questionnaires measuring their math anxiety,
general anxiety, and spatial anxiety. These questionnaires were not included
in these analyses because they did not correspond to our objectives for this
article.
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complete the consent form on the Qualtrics survey, and once
informed consent was obtained, the study commenced. Participants
completed the same math questions and the same five spatial tasks
used in Data Set 1 and a measure of WM. Unlike the first study, the
presentation order of these three sections was randomized across
participants. The presentation order of the five math strands and the
five spatial tasks was also randomized. Finally, participants
completed the demographic questionnaire last. Although this study
was not preregistered, all materials and data for both data sets are
available at https://osf.io/a78qj/?view_only=0f4b407a1a6c4708b40
2ce5d011b0bbe.

Measures

Spatial Tasks. Our five measures of spatial reasoning were
selected based on the current literature on spatial reasoning (Mix &
Cheng, 2012; Uttal et al., 2013) and tasks easily available to us
that were appropriate for adults. We attempted to select a variety
of different spatial tasks found in the literature, but we would like
to point out that our tasks do not cover all possible types of spatial
tasks. In addition, we would like to remind the reader that there
are inconsistencies in the literature on how to classify and name
spatial tasks.
Mental Rotation. Manipulation performance was measured

with a computerized mental rotation task (Shepard &Metzler, 1971).
Participants were shown two 3D objects made of 10 adjoining
cubes, which were oriented in different directions (Figure 1a). The
participants were asked to identify whether they thought the two
objects shown were the same objects oriented differently or if
they were two different objects by pressing “Same” or “Different” on
the screen. There were 15 trials in this task presented one at a time
without a time limit. Once a participant selected a response, their
response time (RT) for the trial was recorded and they were auto-
matically directed to the next trial.
Dot Localization. A modified computerized version of the

dot localization task was used to evaluate participants’ performance
in spatial visualization (Manna et al., 2010). For this task, the
participant was first presented with a rectangle containing two dots
for 125 ms. Once this rectangle had disappeared, the participant was
presented with another rectangle containing a grid and was asked
to press locations within the grid to identify where the two dots,
previously shown, would have been located if both rectangles had
been superimposed (Figure 1b). There were 15 trials in this task
presented one at a time without a time limit for answering.
Navigation. To measure participants’ navigation performance,

a modified and computerized version of the Road Map Test of
Directional Sense was used (Ferguson et al., 2015; Money et al.,
1965). For this task, participants were presented with a map that
contained a dotted path. On each “street” corner, participants were
shown the letter R (right turn) or the letter L (left turn) to
demonstrate the direction they would be turning if they were
walking along the dotted path. However, not every turn was labelled
correctly. Therefore, participants were required to press “Y” (yes) or
“N” (no) to identify whether they agreed or disagreed with the
direction provided (see Figure 1c). Three maps were presented one
at a time with three, 17 and 33 turns without a time limit. Only the
third map with 33 turn was used to score performance, the other two
were used as practice trials as per Ferguson et al. (2015).

Disembedding. Participants’ disembedding performance was
measured with a computerized and modified version of the
embedded figures task (Ekstrom et al., 1976; Lyons et al., 2018).
For this task, a complex two-dimensional line drawing is shown to
the participant, and they are asked to identify which figure out of five
simple line figures is present in the complex drawing (see Figure 1d).
There were nine trials in this task presented one at a time without a
time limit. The five simple figures presented on each trial were
always the same. Once a participant selected a response, their RT for
the trial was recorded and they were automatically directed to the
next trial.

Perspective-Taking. To measure participants’ performance in
perspective-taking, individuals were asked to complete the Hegarty
test (Hegarty & Waller, 2004). For this task, participants were
shown a screen with a variety of common objects (cat, car, house,
etc.) and an “arrow circle.” The participants were asked to imagine
that they were standing in the location of the object in question (e.g.,
Object A in the middle of the circle) and facing a particular point
(e.g., Object B at the top of the circle). They were then asked to
determine in which direction they would find a third object (e.g.,
Object C) by using the mouse to click the appropriate area (see
Figure 1e). There were 15 trials in this task presented one at a time
without a time limit. Once a participant selected a response, their RT
for the trial was recorded and they were automatically directed to the
next trial.

Math Test. Participants were asked to complete a short
mathematical test composed of a variety of fifth (average ages
10–11) to seventh (average ages 12–13) grade questions. These
questions were designed by a math curriculum specialist, and they
were designed to evaluate concepts taught in the five strands of
mathematics evaluated in fifth to seventh grade by the Ontario
mathematics curriculum (OntarioMinistry of Education, 2005).More
specifically, individuals were asked to answer 10 questions in each of
the following strands: data management and probability, geometry
and spatial sense, number sense and numeration, measurement, and
algebra. These questions were designed to be similar to questions that
could be present on a provincially standardized math test. Thus,
participants were presented with a math problem and were given four
multiple-choice answers to choose from. Once the participant had
selected their choice, they were automatically directed to the next
question. Questions were presented one at a time without a time limit.
These questions were used as the mathematical concepts addressed in
these questions are presented early enough inCanadian education that
participants should be familiar with these types of questions (i.e.,
increasing the likelihood of having participants be able to solve the
math problems). See Figure 2 for a sample of the math questions.

Data Management and Probability. This strand deals with
different ways to gather, organize, display, and analyze data, as well
as probability models and situations while applying this knowledge
to real-world situations. In this strand, we asked questions to evaluate
an individual’s ability to interpret graphs, calculate the probability
that something may or may not occur, calculate a missing value
based on an average, and calculate means and medians.

Measurement. In this strand, students learn about units and
processes involved in measurements and apply them to real-life
scenarios. Participants were asked to calculate areas, perimeters, and
volumes; complete conversions of grams to kilograms; and calculate
distances in kilometres per hour.
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Number Sense and Numeration. This strand involves under-
standing basic numbers, operations, and strategies to solve problems.
In this strand, we asked questions about fractions, time (e.g., number
of minutes in 1 year), adding and subtracting decimals, and
calculation of monetary costs.
Geometry and Spatial Sense. In this strand, students learn basic

shapes and figures, their attributes, and geometric properties, as well
as skills related to location and movements and the use of the
Cartesian plane. To evaluate an individual’s proficiency in this strand,
we asked questions related to translation, rotation, and reflection
of shapes; naming geometric shapes and properties; and asked
individuals to locate objects on the Cartesian plane.

Algebra. Algebra is the study of patterns and relationships and
deals with solving equations. To evaluate an individual’s proficiency
in this strand of math, we asked participants to use addition,
subtractions, multiplications, and divisions to find missing numbers
in equations and to demonstrate equality in equations with unknown
quantities on both sides.

Working Memory. Participants in Data Set 2 also completed a
measure of WM capacity, a computerized version of the backward
letter span task, which was adapted from the backward digit span
task on the Wechsler Intelligence Scale for Children, Third Edition
(Maloney et al., 2010; Wechsler, 1997). The participants were
visually shown a series of letters at a rate of 1 letter per second.

Figure 1
Stimuli Used for the Five Spatial Tasks

Note. (a) Mental rotation task, (b) dot localization task, (c) navigation task, (d) disembedding task, and (e) perspective-taking task.
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Participants had to recall the letters shown in backward order. The
series of letters ranged from two letters to eight, starting with two
letters and increasing by one letter every two trials (i.e., Level 1 =
two letters, Level 2 = three letters, … Level 7 = eight letters).
Scoring was based on the highest number of letters in a series
correctly recalled by the participant, thus scoring ranged from 0 to 8.
Scoring was discontinued when the participants failed both trials
at any given level.

Scoring

Accuracy (error rate [ER]; proportion incorrect) and RTs were
recorded for each math question and spatial task trials. Several of the
math tasks displayed evidence of ceiling effects (see Table 1). In
such cases, RTs can add important variation, especially when one’s
analytic approach emphasizes individual differences, as it does here.
Conversely, not all tasks showed ceiling effects, indicating ERs
likely captured meaningful variance for those tasks. Hence, to use
a single, consistent measure for all tasks in the study—across the
mathematical and spatial domains—behavioural performance was
operationalized using z-scores that averaged standardized (z-scored)
ERs and RTs.
When calculating the average RT for a given task, it is important

to note that the high ecological validity of the math tasks meant

that there was a very high degree of variability in the expected
completion time (RT) for different trials. For instance, on a given
math test, one might expect one type of problem to take students
only a few seconds on average, while another problem might be
expected to take several minutes or more. Hence, when calculating
RTs, it was important to treat different trials within a task separately
during the data triage process.

When calculating RTs, it is common practice to remove trials on
which no response was made (RT = undefined), or when RTs were
implausibly low (e.g., RT< 250ms for a trial expected to take 30 s or
more), or when RTs were implausibly high (due to participant
distraction, etc.). Here, we arbitrarily determined unfeasibly low RTs
as <250 ms and unfeasibly high as >3 SDs higher than the average
RT for that trial. Across the entire data sets, a total of 1.8% of trials
for Data Set 1 and 2.6% of trials for Data Set 2 were removed because
of these “outlier” RTs. Note that this outlier removal procedure was
determined using Data Set 1 and then applied to both Data Sets 1
and 2.

Again, due to the high variability in expected mean RTs across
trials even within a task, removed trials created the potential for
biased estimates of an individual’s mean RT for a given task. For
instance, imagine Person A omitted a response for a trial with an
expected RT of 1.5 s on average, and Person B omitted a response
for a trial with an expected RT of 45 s on average. The calculated

Figure 2
Sample of the Mathematics Questions

RELATIONS BETWEEN SPACE AND MATH 7



average will appear to be much lower for Person B simply because
their data set does not include a valid RT data point for the very long
(∼45 s) trial. To accommodate this issue, when a trial was dropped
from a given task, we computed a weighted RT score that takes into
account the average RT of that trial across the whole sample. Each
trial of a task was assigned a weight that represented the proportion
of overall task RT accounted for by that trial. For example, if a trial
was found, on average, to make up 12% of the total RT for that task,
that trial received a weight of .12. If a participant’s RTwas an outlier
for that trial, when computing their weighted task RT, we summed
the RT on each other trial of that task and divided by .88.
Participants who were missing 30% or more of the total RT time

for a given task were excluded from the analysis altogether (Data Set
1: 20 participants, Data Set 2: 48 participants2). For the navigation
task, only one trial is used to calculate performance, thus participants
with an RT equal to or greater than 3 SD away from the mean for this
trial were excluded from the analysis (Data Set 1: five participants,
Data Set 2: eight participants). ERs were computed based only on
using the trials that were included in the RT analysis. Note that the
weighted RT procedure was constructed using the data in Data Set 1
and applied to both Data Sets 1 and 2.
To create our composite ER and RT scores, we z-scored both their

ERs and RTs for each task and took the average. Shapiro–Wilk
tests of normality showed that this method of creating composite
ER and RT scores produced more normal distributions than the
untransformed ER scores (which suffered from ceiling effects) and
other methods of creating composite ER and RT scores (i.e., inverse
efficiency, Townsend & Ashby, 1978, and combined performance,
as used in Lyons et al., 2014).

Analysis

All factor analyses were performed with a maximum likelihood
estimation model in R Version 4.0.2 using participants’ z-scores as
described in the Scoring section. We used maximum likelihood
estimation over orthogonal estimation because we wanted to allow
the factors to correlate as mathematics and spatial reasoning are two
domains known to be correlated (Mix & Cheng, 2012). For the same
reason, a promax rotation was used as it is an oblique rotation and
therefore allows factors to be correlated. For the exploratory factor
analysis of the first data set, we determined the number of informative

factors using eigenvalues above 1.00. Then we evaluated the model
fit using the root-mean-square error of approximation (RMSEA), the
root-mean-square of the residual (RMSR), and the Tucker–Lewis
index of factoring reliability (TLI). All three of these indices are not
strongly affected by sample size (Schermelleh-Engel et al., 2003).
RMSEA and RMSR values below .05 are viewed as a good fit and
below .08 as an acceptable fit, as lower values indicate a better fit
(Schermelleh-Engel et al., 2003). TLI value larger than .97 is a good
cutoff for a good model fit and .95 is acceptable (Schermelleh-Engel
et al., 2003). In addition to estimating the factor loadings, we also
used a bootstrapping method to obtain 95% confidence intervals
around those estimates to evaluate the significance of each factor
loading.

Results

Descriptive Statistics

We first ran descriptive statistics for all the variables for both data
sets. See Table 1 for descriptive statistics for each measure of Data
Set 1 and Table 2 for Data Set 2.

Factor Analyses

Next, we performed a cross-domain factor analysis on each data
set including performance on all the spatial and mathematical tasks.
These analyses will give insight into specific relations between
performance on mathematical and spatial tasks. We expected to find
two factors, one spatial and onemath, with all tasks loading onto their
respective domains. We also expected to have the dot localization,
mental rotation, and perspective-taking tasks to cross-load onto the
math domain.

For the first data set, we found convergence onto two factors; the
eigenvalue of the first factor (3.59) and the second factor (1.22) were
above 1. Two of the model fit measures were good (RMSR = 0.04,
RMSEA = 0.04 [0.02, 0.06]) and the other was acceptable (TLI =
0.97). As shown in Table 3, for the first factor, all tasks have
significant factor loadings except for the disembedding task, but the
spatial tasks (factor loadings ranging from 0.28 to 0.66, except for
disembedding) are more strongly loading onto this factor than most
of the math tasks (factor loadings ranging from 0.11 to 0.15, except
for geometry and spatial sense). The one math task that is highly
loading onto this factor is geometry and spatial sense (factor loading
of 0.53). For the second factor, all math tasks have significant factor
loadings with geometry having the lowest factor loading of 0.22 and
with the measurement strand having the highest factor loading of
0.72. In addition, two of the spatial tasks have a significant factor
loading for this factor, dot localization (factor loading of 0.18) and
interestingly perspective-taking has a negative factor loading of

Table 1
Descriptive Statistics of All Measures, Data Set 1

Measure M ER ER SD M RT RT SD

Mental rotation .28 0.20 10.46 5.29
Dot localization .32 0.23 3.69 0.93
Disembedding .71 0.17 22.72 17.02
Perspective-taking .38 0.28 17.72 5.85
Navigation .22 0.28 3.86 2.25
Data management .16 0.18 53.18 17.74
Measurement .19 0.15 36.85 15.64
Number sense and numeration .06 0.09 20.02 12.09
Geometry and spatial sense .19 0.19 29.47 10.19
Algebra .08 0.13 16.77 7.47

Note. For the navigation task, the mean RT per turn for Trial 3 is shown.
ER = error rates; RT = response time in seconds.

2 Breakdown of excluded participants per task (participants were
excluded altogether from analyses for having more than 30% of trials
removed for a given task because of implausibly short or long RT). Data Set
1: data management and probability, one participant; measurements, two
participants; algebra, three participants; mental rotation, three participants;
dot localization, three participants; disembedding, five participants; and
perspective-taking, three participants. Data Set 2: data management and
probability, two participants;measurements, six participants; number sense
and numeration, two participants; geometry and spatial sense, 13
participants; algebra, two participants; dot localization, two participants;
disembedding, 20 participants; and perspective-taking, one participant.
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−0.21. The other spatial tasks do not have significant factor loadings
on the second factor. Overall, these results suggest onemainly spatial
factor and one mainly mathematical factor with some cross-loading,
with geometry and spatial sense and dot localization positively
loading onto both factors. Consistent with the literature that these two
domains are positively related, the correlation between the two
factors is 0.56.
Next, we performed two cross-domain confirmatory factor

analyses with the second data set. The first is the same factor
analysis we performed with Data Set 1 (not controlling for WM). The
second factor analysis also consisted of a cross-domain factor analysis
but we residualized each measure with respect to performance on the
backward letter span task. This allowed us to test whether our factor
analytic results depended on individual differences in WM capacity.
For these factor analyses, we hoped to replicate the findings of the
factor analysis for the first data set, thus we set the number of factors
for these analyses to two factors. The fit of the two-factor model
without controlling for WM was good for one measure (RMSR =
0.04), acceptable for another measure (RMSEA = 0.05 [0.04, 0.08]),
and slightly below the acceptable benchmark for the last measure
(TLI = 0.94). As shown in Table 4a, for the first factor, all math tasks
have significant factor loadings with geometry and spatial sense
having the lowest factor loading of 0.48 and measurement the highest

of 0.81. This is consistent with the two-factor model of Data Set 1.
In contrast, only one of the spatial tasks has a significant factor
loading for the mathematical factor, dot localization (factor loading
of 0.20), this task was also loading onto the mathematical factor for
Data Set 1. The other spatial tasks do not have significant factor
loadings for the mathematical factor. For the second factor, three of
the five spatial tasks have significant factor loadings (ranging from
.31 to .69), with perspective-taking having the highest factor
loading. In addition, as for Data Set 1, geometry and spatial sense
(factor loading of 0.35) is also significantly loading onto this mostly
spatial factor. The disembedding task did not have a significant
factor loading for either of the factors. Overall, these results replicate
the ones found with Data Set 1, suggesting one mainly spatial factor
and one mainly mathematical factor with some cross-loading with
geometry and spatial sense and dot localization loading onto both
factors. However, not all factor loadings were replicated. Consistent
with the literature that these two domains are positively related and
Data Set 1, the correlation between the two factors is 0.62.

Next, we performed the same cross-domain factor analysis while
controlling forWM. As seen in Table 4b, we obtained similar results
with factor loadings only varying by 0.03 or less, but there were
differences in the significance of the factor loadings. For the first
factor, all math tasks still have a significant factor loading, but the
spatial task dot localization is no longer significantly loading onto
this math factor. In addition, the second factor now only has three
significant factor loadings, mental rotation, perspective-taking, and
geometry and spatial sense, as the navigation task’s factor loading is
no longer significant.

MDS and Network-Based Analyses

Next, we performed a second set of analyses on both data sets
combined to determine whether there was support for the factor
analyses and help visualize the findings. MDS and network-based
analyses are novel analyses that may bring insight into understand-
ing the specific relations between spatial and mathematical tasks.

Consistency Across Data Sets. We first sought to establish
consistency of results across data sets. To visualize this, one can see
the zero-order correlation matrices from each data set in Figure 3.
Visually, these appear quite similar; however, it would be useful to
supplement this qualitative evaluation with a more quantitative
approach. Because the data sets were collected with different sets

Table 2
Descriptive Statistics of All Measures, Data Set 2

Measure M ER ER SD M RT RT SD

Mental rotation .31 0.21 11.23 6.69
Dot localization .37 0.18 3.78 1.09
Disembedding .71 0.17 27.83 24.25
Perspective-taking .42 0.31 19.56 9.13
Navigation .25 0.30 3.62 2.41
Data management .26 0.25 53.18 20.92
Measurement .26 0.22 37.34 18.15
Number sense and numeration .10 0.16 19.05 5.30
Geometry and spatial sense .24 0.24 31.42 14.62
Algebra .11 0.18 18.49 9.67
Backward letter span 5.85a 2.06

Note. For the navigation task, the mean RT per turn for trial three is
shown. ER = error rates; RT = response time in seconds.
a The mean score/span reached by participants for the backward letter span
task.

Table 3
Cross-Domain Standardized Pattern Matrix Loadings for Factor Analysis of Data Set 1

Predictor

Factor 1 Factor 2

Coefficient Confidence interval Coefficient Confidence interval

Mental rotation 0.37* [0.18, 0.52] −0.04 [−0.21, 0.13]
Spatial visualization 0.28* [0.13, 0.42] 0.18* [0.02, 0.37]
Disembedding 0.06 [−0.13, 0.19] −0.12 [−0.27, 0.03]
Perspective-taking 0.97* [0.66, 1.17] −0.21* [−0.37, −0.01]
Navigation 0.43* [0.27, 0.54] 0.02 [−0.11, 0.19]
Data management 0.14* [0.05, 0.26] 0.69* [0.57, 0.91]
Measurement 0.15* [0.07, 0.25] 0.72* [0.61, 0.94]
Number sense and numeration 0.11* [0.02, 0.22] 0.47* [0.36, 0.64]
Geometry and spatial sense 0.53* [0.35, 0.68] 0.22* [0.08, 0.42]
Algebra 0.15* [0.05, 0.27] 0.56* [0.45, 0.76]

Note. Values in bold indicate the (significant) factor loading that was greater, considering Factor 1 versus Factor 2.
* p < .05.
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of participants, one cannot compute test–retest reliability in the
usual fashion. However, we can instead quantify the similarity
between the patterns of results by correlating the correlation
matrices themselves. One can think of the correlation matrices in
Figure 3 as sets of summary statistics (r-values) that quantify the
relationship between each pair of variables in each data set. The
question is whether the relative magnitudes of these pairwise
relations are preserved across data sets. Because we are dealing with
summary statistics, we can directly relate results between data sets
without referring to the underlying data. Operationally, we achieve
this by vectorizing each correlation matrix and, to convert bounded
r-values into normally distributed Fisher’s z-values, by taking the
inverse hyperbolic tangent of each r-value, zij = atanh (rij), where rij
is the correlation between a given pair of variables i and j. Finally,
we simply correlate the resulting vectors of z-values. Doing so here
showed strong agreement between data sets: r = 0.854 (p < .001).
In other words, the relative magnitudes of the pairwise relations
characterizing the data sets were well preserved, despite being
collected with entirely separate samples of individual participants.
A related approach, especially relevant here, is to correlate the

factor loadings from the factor analyses across data sets. In essence,
we can ask whether a given task loaded onto each factor to a similar
extent in each data set. Here, we took the rotated loading coefficients
from the two-factor solutions (Tables 3 and 4a). Note that we took
values from Table 4a instead of 4b as the former did not control for
WM, which is more comparable to Data Set 1 (though results were
highly similar whether one used factor loadings from Table 4a or 4b).
In addition, because what constituted Factors “1” and “2” were
arbitrarily reversed, we aligned factors according to the domain each

primarily captured: spatial (Data Set 1, Factor 1; Data Set 2, Factor 2)
andmathematical (Data Set 1, Factor 2; Data Set 2, Factor 1). In other
words, for each task, we aligned the “mathematical factor” loadings
across studies and the “spatial factor” loading across studies. Table 5
shows these aligned factor loadings (columns labelled Data Set 1 and
Data Set 2). As with the analysis above, we Fisher’s z-transformed
the factor loadings to be normally distributed. The above sequence of
steps revealed that agreement between factor loadings across studies
was high: r = 0.734 (p < .001).

In summary, whether examining agreement in terms of pairwise
relations between variables (r = 0.854) or relative factor loadings
(r = 0.734), results across data sets demonstrated a high degree of
consistency.

Data Visualization. In this section, we sought to further
characterize the interrelations between task domains (mathematical
and spatial) using a network-based approach. A simple starting point
is to visualize the results from the factor analyses, as doing so can
potentially reveal larger patterns that may not be immediately
evident from examining statistical tables alone.

To this end, Figure 4a visually summarizes the factor loadings
for all 10 tasks. For a given task, we averaged its loading on a given
factor (mathematical or spatial) across data sets by computing
row-wise averages from Table 5 (“Average” column).3 Next, we

Table 4
Cross-Domain Standardized Pattern Matrix Loadings for Factor Analysis of Data Set 2

Predictor

Factor 1 Factor 2

Coefficient Confidence interval Coefficient Confidence interval

(a)
Mental rotation 0.15 [−0.07, 0.42] 0.49* [0.15, 1.02]
Dot localization 0.20* [0.04, 0.47] 0.21 [−0.03, 0.42]
Disembedding −0.09 [−0.27, 0.14] 0.29 [0.00, 0.56]
Perspective-taking 0.06 [−0.15, 0.53] 0.69* [0.18, 1.09]
Navigation 0.03 [−0.16, 0.36] 0.31* [0.01, 0.51]
Data management 0.72* [0.58, 0.88] 0.01 [−0.10, 0.28]
Measurement 0.81* [0.63, 0.97] −0.05 [−0.23, 0.33]
Number sense and numeration 0.72* [0.56, 0.83] −0.16 [−0.34, 0.19]
Geometry and spatial sense 0.48* [0.35, 0.78] 0.35* [0.17, 0.54]
Algebra 0.56* [0.40, 0.76] 0.03 [−0.12, 0.25]

(b)
Mental rotation 0.17 [−0.12, 0.54] 0.48* [0.11, 1.06]
Dot localization 0.21 [0.00, 0.54] 0.19 [−0.12, 0.49]
Disembedding −0.10 [−0.29, 0.15] 0.28 [−0.03, 0.60]
Perspective-taking 0.09 [−0.17, 0.63] 0.66* [0.13, 1.09]
Navigation 0.01 [−0.17, 0.35] 0.30 [−0.02, 0.51]
Data management 0.71* [0.42, 1.02] 0.00 [−0.25, 0.43]
Measurement 0.80* [0.47, 1.11] −0.06 [−0.36, 0.47]
Number sense and numeration 0.70* [0.47, 0.88] −0.17 [−0.42, 0.27]
Geometry and spatial sense 0.50* [0.24, 0.92] 0.34* [0.04, 0.67]
Algebra 0.54* [0.31, 0.82] 0.02 [−0.24, 0.37]

Note. (a) Shows the cross-domain standardized pattern matrix loadings without controlling for working memory performance. (b) Shows the cross-
domain standardized pattern matrix loadings controlling for working memory performance on the backward letter span task. Values in bold indicate the
(significant) factor loading that was greater, considering Factor 1 versus Factor 2.
* p < .05.

3 Given (a) the high degree of consistency between data sets established in
the previous section, (b) a desire to avoid overfitting conclusions to any one
data set, (c) the fact that the analyses in this section use summary statistics as
their starting point, the following analyses take their inputs as summary data
averaged over the two data sets. Doing so should also yield conclusions most
likely to replicate beyond this article.
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plotted these factor loadings in a two-dimensional space, with
“spatial” arbitrarily assigned to the x-axis and “mathematical”
arbitrarily assigned to the y-axis. (Note this is very similar to a MDS
approach.)4 Figure 4a shows four of the five math tasks, coloured
red, tightly clustered together along the y-axis (the “mathematical”
dimension). The five spatial tasks (blue) are less tightly clustered
but still largely occupy a distinct portion of the graph. Thus, the
graph visually captures several key features of the factor analyses
from previous sections: The math tasks load more strongly onto the
mathematical factor than did the spatial tasks onto the spatial factor,
as indicated by tighter clustering for the former. Moreover, a given
task tended to load more highly on the factor representing its
“native” domain, which can be seen in Figure 4a as two sets of tasks
visually separated into two subareas of the graph.
Turning to what Figure 4a reveals about specific tasks, we see a

key exception to the above pattern in the geometry and spatial sense

Figure 3
Zero-Order Correlation Matrices for Data Set 1, Data Set 2, and the Average Thereof

Note. MRT = mental rotation; DL = dot localization; DEM = disembedding; PERS =
perspective-taking; NAV= navigation; DAT= data management; MEAS=measurement; NUM=
number sense and numeration; GEO = geometry and spatial sense; ALG = algebra. See the online
article for the color version of this figure.

4 In a traditional MDS approach, one projects factor loadings into a
desired set of dimensions, represented by the same number of factors
(the loading on Factor-1 is the x-coordinate, that on Factor-2 is the
y-coordinate, and so on). One typically ensures orthogonality of
coordinates by extracting factors that are a priori forced to be orthogonal.
Here, we allowed factors to be correlated given strong theoretical
assumptions in the literature that these domains are related (and indeed
the two factors were correlated in both data sets, per the results discussed
in previous sections). To achieve orthogonal coordinates here, we thus
relied on the pattern matrix portion of the factor analysis output. The
pattern matrix represents the loadings of a given input variable (in our
case a task) onto each factor, controlling for all other factors. Rotated
factor loadings from the pattern matrix are thus by definition orthogonal.
Indeed, the rotated factor loadings in Tables 3 and 4a are taken from their
respective pattern matrices. Hence, it is reasonable in the current case to
express these loadings as relative weights on orthogonal dimensions, for
instance as x- and y-axes in a scatterplot. Figure 3a is thus effectively a
scatterplot depicting each task’s relative position on “spatial” (x) and
“mathematical” (y) dimensions.
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task, which showed significant loadings on both domain factors
(the only task to do so consistently—i.e., in both data sets).
More specifically, the geometry and spatial sense task loaded more
highly onto the spatial factor than any of the other math tasks. This
result is visually captured in Figure 4a by the fact that the geometry
and spatial sense task is “positioned” roughly halfway between
the mathematical and spatial clusters. However, this qualitative
assessment does not capture whether geometry bridges the two
domains such that it shares specific features with unique aspects of
both mathematical and spatial reasoning.
Network-Based Analysis. In both data sets, we observed

significant factor loadings for the geometry and spatial sense task on
both the mathematical and the spatial factor, and in Figure 4a,
geometry and spatial sense appears to occupy a position roughly in
between the two domains. However, on further reflection, it is not
entirely clear what this means. Most of the other math tasks loaded
onto the spatial factor to some extent, as did several of the spatial
tasks on the mathematical factor. Hence, one can ask whether the
cross-loading seen for the geometry and spatial sense task is in fact
specific to that task. Further, one can ask whether geometry is
uniquely linked to specific tasks within each domain. In this way, we
can more directly probe whether geometry comprises a unique
combination of processes that share features with both mathematical
and spatial processes. More broadly, this approach can help us better
uncover the specific cognitive mechanisms that link the mathemati-
cal and spatial domains.
To test whether the geometry and spatial sense task is uniquely

related to specific tasks with each of the two domains, we computed
the partial correlation matrix characterizing unique relations between
all 10 tasks. As above, we combined the two data sets by averaging
summary statistics—in this case, the zero-order correlation matrices
in Figure 3. To quantify unique associations between tasks, the
(averaged) zero-order matrix was adjusted to reflect only estimates of

shared variance that cannot be attributed to any of the other variables
in the matrix. In other words, the matrix of zero-order r-values was
reduced5 to a matrix of partial r-values. Figure 4b shows the same
scatterplot as in Figure 4a, with a statistically significant unique
relation (a significant partial correlation) indicated by a link between
those two tasks. Red lines indicate significant unique links
between two math tasks; blue lines indicate significant unique links
between two spatial tasks; pink lines indicate significant unique
links between a math and a spatial task. Finally, it is important to note
that this approach represents a fairly stringent test: A link that is
present indicates a significant (p < .05) relation between the two
tasks, after controlling for the influence of all eight other tasks. In
other words, a link in Figure 4b represents a unique relation specific
to that pair of tasks.

Figure 4b shows that the five math tasks were highly
interconnected, with each math task connected to a minimum of
two other math tasks. Conversely, the five spatial tasks were largely
connected through a central node: the perspective-taking task. In
addition, the two domains were connected via links to the geometry
and spatial sense task. This sort of configuration—two distinct
“neighbourhoods” of dense connections that in turn connect with one
another via a central (or “hub”) node—is indicative of what is often
referred to as a “small-world network.” Indeed, one can quantify the
“small-worldness” of a network by estimating the extent to which
path length is kept relatively short via a small number of connections
between densely connected neighbourhoods (Watts & Strogatz,
1998). We quantified “small-worldness” via the Small World Index
(SWI; Neal, 2017), where SWI values>1 are conventionally taken to
indicate a network exhibiting small-world properties. The SWI of the
network depicted in Figure 4b was 1.89, indicating the network
indeed exhibited small-world-like properties.

In summary, if we distill the relations between this set of five math
and five spatial tasks to only those characteristics shared by each pair
of tasks, we see that they organize themselves into distinct domains—
a result that corroborates the factor analyses above. Further, we see
that these domains are linked via the geometry and spatial sense task.
In particular, geometry and spatial sense shares unique characteristics
with both specific math tasks (measurement and data management)
and specific spatial tasks (perspective-taking and dot localization). In
this way, we can answer in the affirmative that geometry indeed
bridges the math and spatial domains. Moreover, this bridge consists
of a specific constellation of shared cognitive processes. That is,
geometry consists of a set of underlying cognitive processes, some of
which are unique to specific types of spatial processing and others are
unique to specific types of mathematical processing. It is thus not the
case that all math tasks are inherently spatial, and vice versa. Instead,
the links between domains arise from a specific subset of skills that
are common to both domains, and geometry happens to comprise a
particularly large number of these cross-domain skills.

Table 5
Aligned Factor Loadings for Data Set 1, Data Set 2, and the
Average Thereof

Task Data Set 1 Data Set 2 Average

Spatial factor
Mental rotation 0.37 0.49 0.43
Dot localization 0.28 0.21 0.25
Disembedding 0.06 0.29 0.18
Perspective-taking 0.97 0.69 0.83
Navigation 0.43 0.31 0.37
Data management 0.14 0.01 0.08
Measurement 0.15 −0.05 0.05
Number sense and numeration 0.11 −0.16 −0.03
Geometry and spatial sense 0.53 0.35 0.44
Algebra 0.15 0.03 0.09

Mathematical factor
Mental rotation −0.04 0.15 0.06
Dot localization 0.18 0.20 0.19
Disembedding −0.12 −0.09 −0.11
Perspective-taking −0.21 0.06 −0.08
Navigation 0.02 0.03 0.03
Data management 0.69 0.72 0.71
Measurement 0.72 0.81 0.77
Number sense and numeration 0.47 0.72 0.60
Geometry and spatial sense 0.22 0.48 0.35
Algebra 0.56 0.56 0.56

5 We did so using a pseudoinverse procedure pioneered by Strimmer
(Opgen-Rhein & Strimmer, 2007; Schäfer & Strimmer, 2005); see also the R
package implementing this technique at https://www.strimmerlab.org/softwa
re/corpcor/index.html. In essence, inverting a covariance matrix by definition
orthogonalizes the off-diagonal elements with respect to one another. One
must then return these elements to standardized units—that is, partial
correlations (hence “pseudo”-inverse). These can be computed in the usual
manner by dividing each element by the square root of the product of its
constituent variances, which can be taken from the main diagonal of the
inverted matrix.
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Discussion

On average, people who perform better on measures of spatial skill
tend to perform better on measures of mathematical skill. While this
relation is often discussed in general terms, it is imperative to
remember that “mathematical reasoning” and “spatial reasoning” are
umbrella terms used to represent a constellation of different skills.
Further, research in this area is leaning towards domain-specific
relations between these two constructs and not only a domain-general
relation (e.g., Bailey, 2017; Caviola et al., 2012; Robert & Lefevre,
2013; Trbovich & LeFevre, 2003). Indeed, within any given
mathematical task or spatial task, there are a host of cognitive
processes at play. As such, understanding if specific links exist
between performance on different mathematical tasks and spatial
tasks is highly important to begin uncovering what these cognitive
processes might be. In this work, we sought to explore specific
relations, using factor analysis, MDS, and network-based analyses,
between performance on five different spatial tasks and five different
math tasks in undergraduate students. The factor analyses represented
a more classic method of exploring relations between two constructs
while the MDS analysis allowed us to visualize the results of the
factor analyses and gain more information on the unique relations
between performance on the spatial and math tasks. The network-
based analysis, where we tested for significant correlations between
each pair of tasks after controlling for all eight other tasks (signifi-
cant partial correlations), then helped us to identify which pairs of
tasks share unique variance.

Space and Math: Related but Distinct Constructs

Results from the factor analyses revealed a two-factor model with
a spatial factor and a mathematical factor. In Data Set 1, all of the
math tasks loaded onto the mathematical factor, and all but one
spatial task loaded onto the spatial factor (the disembedding task did
not significantly load onto either factor). Further, the two factors
were significantly and positively related to one another. The two-
factor model was replicated in the confirmatory factor analyses
conducted using Data Set 2, the only difference being that only three
spatial tasks loaded significantly onto the spatial factor. These
results replicated those of Mix et al. (2016, 2017) who also found a
two-factor model in factor analyses of spatial and mathematical
tasks in children. This evidence is consistent with the idea that
spatial reasoning and mathematical reasoning are two related but
distinct constructs.

The results generated via the MDS and network-based analyses
were also consistent with the related but distinct constructs relation
between spatial and mathematical reasoning. Indeed, the tasks were
visually organized into two separate but related clusters of tasks. The
math tasks formed a tight, highly interconnected cluster that was
strongly associated with the mathematical factor, except for the
geometry and spatial sense task, which was farther away from the
math cluster and seemed as strongly associatedwith the mathematical
factor as the spatial factor. In contrast, the spatial tasks were not as
tightly clustered and interconnected but were all more strongly
associated with the spatial factor than the mathematical factor.

Figure 4
Visual Representations of the MDS and Network-Based Analyses of Both Data Sets Combined

Note. (a) Scatterplot visualizing the factor loadings of each task. Factor loadings were averaged across both data sets. Spatial tasks are shown in blue; math
tasks are shown in red. (b) Lines between nodes indicate a significant correlation between those two tasks, controlling for the influence of the eight other tasks.
Blue lines indicate relations between two spatial tasks; red lines indicate relations between two math tasks; pink lines indicate relations between a spatial and a
math task. MDS = multidimensional scaling; MEAS = measurement; DAT = data management; NUM = number sense and numeration; ALG = algebra;
GEO = geometry and spatial sense; DL = dot localization; MRT = mental rotation; NAV = navigation; DEM = disembedding; PERS = perspective-taking.
See the online article for the color version of this figure.
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Overlap of the Spatial Tasks

Interestingly, there was less interconnectedness within the
spatial factor compared to the math factor. The disembedding task
did not significantly load onto the spatial factor in either data set,
the dot localization task did not load onto the spatial factor in the
second factor analysis, and there were fewer unique relations
between the spatial tasks than between the math tasks in the
network-based analysis. These data may indicate that the math
tasks share more overlapping variance with one another than do the
spatial tasks.
The data presented herein are inconsistent with those reported by

Mix et al. (2016, 2017) who explored relations between math and
spatial tasks in children and found that spatial tasks always
correlated with the spatial factor in children. While it is not clear
why we see a different pattern of data than Mix et al. (2016, 2017)
with respect to the degree of overlap of the spatial tasks, there are
multiple possible explanations for this discrepancy. First, this
difference may be because, although similar, different spatial tasks
were used between the Mix et al. (2016, 2017) studies and the
present study and correlations between tasks and the spatial factor
may be task specific. A second possible explanation for the
difference between our findings and those of Mix et al. (2016, 2017)
may have to do with the age of participants. Indeed, it is possible that
as we age, spatial skills become more differentiated, and/or a wider
array of strategies can be used to complete spatial tasks. We cannot
determine, from the current data set, why this small discrepancy
exists between our results and those of Mix et al. (2016, 2017). We
nonetheless believe that uncovering the explanation for this
discrepancy represents an interesting avenue for future research,
one that will require studies with a longitudinal design that follows a
cohort of people over a number of years.

Cross-Domain Factor Loadings and Relations

Our results also revealed two cross-domain factor loadings in the
factor analyses and interesting patterns of specific relations in the
network-based analysis, suggesting domain-specific relations
between the spatial and mathematical tasks. First, the strongest
cross-domain factor loading was the geometry and spatial sense
task. When we combined data sets and averaged factor loadings
from both factor analyses, the relation between the geometry and
spatial sense task and each factor were very similar, r= 0.44 for the
spatial factor and r = 0.35 for the mathematical factor. In addition,
the network-based analyses revealed that the mathematical domain
and the spatial domain are interconnected via the geometry and
spatial sense task with this task acting as a bridge between both
clusters of tasks. More specifically, the geometry and spatial sense
task shared unique variance with two other math tasks (measure-
ment and data management) and two spatial tasks (perspective-
taking and dot localization). From this, we can predict that
geometry and spatial sense, measurement, and data management
rely on common cognitive processes that are not, or to a much
lesser degree, used in the other math tasks. In the same way, we can
predict that the geometry and spatial sense task shares common
cognitive processes with the perspective-taking task and the dot
localization task. This may not be surprising given that “spatial
sense” is incorporated into this strand and many of the questions

used to measure this strand require students to hold in mind and
manipulate spatial representations. For example, in one question
in the Geometry and Spatial Sense section of the math task,
participants are asked to perform a series of translations and
reflections on a shape in a Cartesian plane and to identify its new
position.

These data highlight an interesting point. That is, while we have
been arguing that the concepts of “mathematical reasoning” and
“spatial reasoning” represent concepts that differ from one another,
even within the substrands of math tested here, there exists
variability. In other words, each of the math strands also requires a
diverse set of cognitive processes and these may vary between
question types within the same strand. Indeed, the individual
questions within the geometry and spatial sense strand may vary
with respect to their degree of overlap with any given spatial skill.
For example, transformations on a Cartesian plane may overlap
more heavily with mental rotation, whereas determining how many
lines of symmetry a given shape has may overlap more heavily with
perspective-taking. Thus, while we have taken an important step
towards understanding the intricate relations between math and
space, there is certainly more work to be done.

Second, the dot localization task is the only spatial task that
consistently cross-loaded onto the mathematical factor. In the
exploratory factor analysis of Data Set 1, performance on the dot
localization task cross-loaded onto the mathematical factor,
suggesting that this spatial task may be more strongly related to
math performance compared to other spatial tasks. In the
confirmatory factor analysis, the dot localization task cross-
loading replicated, with this task only loading significantly onto the
mathematical factor and not the spatial factor. However, when
considering both data sets and visualizing the factor loadings in
the MDS analysis, it became clear that this task was part of the
“spatial” cluster and is slightly more strongly associated with the
spatial factor than the mathematical factor. Further, the network-
based analysis revealed that this task is uniquely related to one
math task, geometry and spatial sense, and one spatial task, the
perspective-taking task.

The cross-domain factor loadings here can add to evidence
regarding the novel versus familiar hypotheses proposed by
Mix et al. (2016; discussed in the introduction). In our study, the
mathematical content should consist of familiar math skills that
participants would have learned in grade school because our
questions were at a Grade 5–7 level. In a way, our results tend to
support the novel versus familiar theory because only one out of five
of each math task and spatial task cross-loaded onto the other
domain in the factor analyses, and only one mathematical task was
uniquely related to two spatial tasks in the network-based analysis.
Perhaps as math content becomes more familiar, some relations that
were once unique become more general (as our two factors were
highly correlated, r = 0.56–0.62). This may be because as math
becomes more familiar, we can begin to rely on multiple solution
strategies to solve the same math. Take, for example, two-digit
additions. Children may first reply on stacking the two numbers,
adding the ones, and then adding the 10s (e.g., 17 + 30). But, as the
person becomes more familiar with the math, they may be able to
use a decomposition strategy (e.g., 20 + 30 − 3) or even use direct
retrieval. Nonetheless, some cross-domain factor loadings were
observed within our adult population, suggesting that some specific
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relations between spatial and mathematical tasks remain even when
math operations become familiar and more automatic.

Controlling for Working Memory

Our second data set included a measure of WM as a proxy for
general ability.We selected this task because it is a good predictor of
academic achievement (Alloway & Alloway, 2010). The results of
the confirmatory factor analysis were similar when we controlled for
WM performance and when we did not. This result suggests that the
relations found between the mathematical and spatial tasks in the
factor analysis cannot simply be explained by a general tendency for
individuals who perform well in one academic area to perform well
in other areas. This finding is consistent with the hypothesis that the
relation between spatial reasoning and math reasoning is not only
domain general but also that specific relations exist between spatial
and mathematical tasks.

Perspective-Taking, the Central Node

Another interesting finding revealed by the network-based
analyses is that the perspective-taking task is a central node of
the spatial task cluster and is uniquely associated with three of the
other four spatial tasks, as well as the geometry and spatial sense
task. This suggests that the perspective-taking task shares cognitive
processes with most other spatial tasks and the geometry and spatial
sense task. Perhaps the perspective-taking task indexes a cognitive
process that is required to complete most other spatial tasks or rather
the perspective-taking task requires multiple cognitive processes
indexed by each of the other spatial tasks. For example, to complete
the perspective-taking task, one may need to use two subcompo-
nents from Kosslyn and colleague’s Mental Imagery framework
(Kosslyn, 1980; Kosslyn et al., 2006), image maintenance (to
maintain the array of objects in mind) and image transformation (to
change the perspective), while the mental rotation task may only
require mental transformation and the dot localization only image
maintenance. Future studies should seek to test this hypothesis and
further explore these cognitive processes.

Small-World Network Properties

Lastly, we found that the unique links identified with the
network-based analysis are representative of a “small-world
network.” A small-world network is characterized by dense
neighbourhoods or clusters of nodes that are interconnected by
central nodes and thus the path lengths between each node are
“small.”As such, the two characteristics of a small-world network is
a high clustering coefficient and a small mean path length between
each node (Watts & Strogatz, 1998). One example of small-world
networks is social networks. The high clustering coefficient or
neighbourhoods are represented by social groups, and the small
mean path length is represented by the “6 degrees of separation”
between all individuals in the world. This small-world network
pattern has been found in many different contexts including social
networks (Guimerà et al., 2003; Uzzi & Spiro, 2005), transportation
networks (Neal, 2014), biological networks (Wagner & Fell, 2001),
and neural networks (Guye et al., 2010; Telesford et al., 2011).
Research suggests that some brain networks are organized in small-
world networks, and this can help explain how information is

transferred in the brain (Gallos et al., 2012). Thus, the small-world
network we found when exploring unique relations between
performance on mathematical and spatial tasks could inform future
brain imaging and neurocognitive studies on how these two
domains are related in the brain. To our knowledge, this is the
first time that the small-world network has been investigated in the
context of the relation between the spatial and mathematical
domains. This representation may provide insight into how math
and space are related and how cognitive processes between the two
domains interact in the brain. More specifically, some math and
spatial tasks may be central nodes that are closely connected to
multiple other tasks in each domain, while other tasks that do not
have direct links to the other domain may still be related but not as
strongly as the “central node” tasks. In this study, we identified
geometry and spatial sense as a central node of the small-world
network wherein the spatial domain is one neighbourhood or cluster
and the math domain is another.

The small-world network may also be a good way to reconcile the
domain-general relation and domain-specific relation theories about
the relation between spatial and mathematical reasoning. Whereby
the central node tasks create specific unique links between some
spatial and mathematical tasks and domain-general relations exist
via the “6 degrees of freedom” between the other tasks that are not
central nodes.

Limitations and Future Directions

Although our study employed many innovative approaches,
there remains room for extension and there are important
limitations to consider. First, our second data set was collected
online, which means participants completed the study in their
homes. This means that we were not able to control the environment
and thus confirm the participant’s engagement in the tasks and limit
distractions. Second, one of our spatial tasks, the disembedding
task, nearly had an “at chance” ER (ER = .71, at chance ER for this
task= .80), which indicates it may be too difficult and not capturing
participants’ true disembedding skills. This task also did not load
onto either factor during the factor analysis. Future studies
investigating specific relations between different spatial and
mathematical tasks should include a task that better captures
disembedding performance.

Another limitation of the present study is the ease with which
participants completed the math tasks. We worked to mediate the
ceiling effects by using an accuracy and RT composite score to
obtain a more normal distribution of scores. However, the task
difficulty may still have created a bias in the results. While the
ceiling effect allows us to confidently conclude that these tasks were
familiar to the participants, it does mean that we cannot generalize
our findings to math tasks that are more novel. Future studies using a
mix of novel and familiar math questions are needed to determine
the generalizability of these findings.

Lastly, our study was conducted using undergraduate adults.
This sample has both advantages and disadvantages with respect to
the interpretation of our data in light of those of Mix et al. (2016,
2017), Specifically, an advantage of our study is that it is the first, to
our knowledge, to test the cross-modal relations between math and
space in adults. However, the fact that we did not also include
children as a comparison group within our design, means that we
cannot be sure whether the discrepancies observed between our
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results and those of Mix et al. (2016, 2017) are due to developmental
differences in the relation between mathematical and spatial
reasoning, to something specific to the exact mathematical and
spatial tasks employed, or to something else entirely. Nonetheless,
the present study has yielded data with important implications for
our understanding of the relations between math and space and has
illuminated interesting questions for future research.

Conclusion

In two separate data sets, we explored unique links between
different strands of mathematics and different measures of spatial
skill. Our results suggest that, in North American undergraduate
students, spatial and mathematical processing are two distinct but
related domains that have “small-word network” properties, with
geometry, a math task that seems to require more spatial strategies,
as a central node that interconnects the two domains. These
findings, taken together with those of previous research (e.g., Mix
et al., 2016, 2017), have important theoretical implications for our
understanding of the complex relations between mathematical and
spatial reasoning, highlighting important domain-specific relations
that may vary across developmental periods. The findings of these
studies can also help guide future training studies aiming to
improve different areas of mathematics using spatial training.
Finally, future studies may want to explore the relation between
other spatial tasks of the same type as the ones used in our study to
determine if the small-world network properties found between the
spatial and familiar mathematical domains are specific to these
tasks at these levels of difficulty or whether small-world network
properties generalize to other types of spatial and mathemati-
cal tasks.

Résumé

L’un des liens les plus robustes dans le domaine de la cognition est
celui entre le raisonnement spatial et le raisonnement mathématique.
Or, une question importante se pose : cette relation est-elle généralisée
au domaine, ou existe-t-il des liens précis entre l’exécution de
certaines tâches spatiales et l’exécution de certaines tâches
mathématiques? Dans cette étude, nous évaluons les liens uniques
entre l’exécution de cinq tâches spatiales et cinq tâches
mathématiques. Une analyse exploratoire des facteurs effectuée sur
l’ensemble de données 1 (N = 391) a généré un modèle bifactoriel,
soit un facteur spatial et une mathématique, assorti de saturations
factorielles inter domaines significatives. La structure générale du
modèle bifactoriel a été reproduite lors d’une analyse de confirmation
des facteurs menée sur un ensemble de données distinct (N = 364).
Cependant, l’importance des saturations factorielles différait selon la
tâche. Le positionnement multidimensionnel et les analyses en réseau
menées sur les ensembles de données combinés mettent en lumière un
groupe « spatial » avec un noyau central, ainsi qu’un groupe «
mathématique » plus étroitement interconnecté. Les deux groupes
étaient interconnectés par la tâche mathématique géométrie et
orientation spatiale. Les liens uniques relevés par l’analyse en
réseau sont représentatifs d’un réseau du type « petit monde ». Ces
résultats ont des conséquences théoriques sur notre compréhension de
la relation entre le spatial et la mathématique, ainsi que des
conséquences pratiques sur notre compréhension des limites du

transfert entre les paradigmes de la formation spatiale et les tâches
mathématiques.

Mots-clés : raisonnement mathématique, raisonnement spatial,
réseaux « petit monde »
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