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Research on how people process numerical order carries implications for our theoretical understanding
of what a number means and our practical understanding of the foundation upon which more sophisti-
cated mathematics is built. Current thinking posits that ordinal processing of numbers is linked to
repeated practice with the integer count list, but the mechanisms underlying this link remain unclear.
For instance, in standard ordinal verification paradigms, participants more rapidly and accurately verify
that count-list sequences (e.g., 3–4–5) are “in-order” than non-count-list sequences (e.g., 2–4–6),
although it remains unclear whether this is due to strong count-list processing or poor non-count-list
processing. If the count list primarily facilitates ordinal processing of count-list sequences, then forcing
participants to classify sequences like 3–4–5 as “not-in-order” should adversely affect ordinal verifica-
tion performance. We found that it does, but only moderately in single-digit sequences (d = �.26), and
not at all in the case of double-digit sequences (d = �.02). Alternatively, the count list may influence or-
dinal processing in an exclusionary manner, creating a tendency to view anything that does not match
the count-list as not-in-order. If so, then allowing participants to classify ordered (but non-count-list)
sequences like 2–4–6 as not-in-order should improve ordinal verification performance. It did, with
strong effects for both single-digit (d = .74) and double-digit sequences (d = 1.04). Furthermore, we
demonstrated that the reverse distance effect found in standard ordinal verification paradigms is driven
primarily by poor non-count-list processing. Taken together, our results advance our understanding of
the mechanisms by which the count list shapes ordinal processing, even in highly numerate adults.
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A deeper understanding of how humans represent basic numeri-
cal concepts has implications for a wide range of educational, fi-
nancial, and health outcomes (Bynner & Parsons, 2005; Crawford
& Cribb, 2013; Duncan et al., 2007; Gerardi et al., 2013; Reyna et
al., 2009). Moreover, empirical work examining the cognitive ba-
sis of foundational numerical representations can inform a long
tradition of philosophical inquiry into the nature of what is meant
by notions of “number”, “quantity”, and “order”. For instance, a
written number—say 6—conveys information about both cardinal
value (the quantity of objects in a set) and implies relations with
other numbers—for example, 6 is twice 3, a quarter of 24, and the
cube-root of 216. Perhaps the most fundamental of these relations

is relative order (6 comes one after 5 and one before 7). Various
theoretical viewpoints on the fundamental nature of numbers have
been advanced over the centuries, with some emphasizing the im-
portance of primary cardinal value (such as Bertrand Russel), and
others proposing that ordinality forms the basis of understanding
numbers as a coherent system (such as Giuseppe Peano; see Coles
& Sinclair, 2018). Modern empirical research on the cognitive and
neural foundations of numerical processing has largely focused on
cardinality (e.g., Ansari, 2008; Butterworth, 1999; Daro et al.,
2011; Nieder & Dehaene, 2009). However, recent years have seen
a steady uptick in work focusing on ordinality (Lyons et al.,
2016). This latter upwelling of work on ordinality has been driven
in part by evidence showing that basic tasks assessing individual
differences in judgments of ordinal relations between numbers are
particularly strong predictors of more complex forms of mathe-
matical processing. Indeed, ordinality judgments often out-predict
tasks focused on cardinal judgements of numerical value (e.g.,
Goffin & Ansari, 2016; Lyons & Beilock, 2011; Sasanguie et al.,
2017). Hence, a deeper understanding of how individuals process
ordinal relations among numbers has implications for our theoreti-
cal understanding of what it means for number symbols to convey
information, as well as for the basic cognitive foundations upon
which more sophisticated mathematics are built (Lyons, et al.,
2016).
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The Influence of the Count List on Ordinal Processing

Current thinking about the development of ordinal processing
of numbers is that it is linked strongly to children’s familiarity
with and repeated practice rehearsing the integer count list (“one,
two, three . . .”; for a review, see Lyons et al., 2016). One of the
first numerical skills children acquire is the ability to recite the
count list, which often precedes their understanding of the numeri-
cal meanings of the words they are saying (Wynn, 1990, 1992).
By the time they enter grade school, children have substantial ex-
perience reciting the count list—certainly for numbers up to 10
(Wynn, 1992). This repeated, sustained experience is thought to
create specific memory traces against which one can easily verify
that sequences such as 1–2–3 and 4–5–6 are in numerical order
(e.g., Bourassa, 2014; Franklin et al., 2009; Turconi et al., 2006).
Moreover, the high frequency with which this list is recited is
thought to strengthen the ordinal associations between adjacent
numbers in the count list, thus facilitating processing of count-list-
adjacent numbers (LeFevre et al., 1991; Lyons & Beilock, 2013).
We refer to this hypothesis as the facilitatory hypothesis: greater
experience with the count list strengthens ordinal associations
between numerals that are adjacent in the count list. Consistent
with this hypothesis, when judging the ordinality of numerical
sequences, both adults and children as young as first grade show
strongest performance (lowest response times and error rates)
when verifying that count-list sequences (e.g., 1–2–3) are “in
order” resulting in a count-list advantage (Franklin et al., 2009;
Goffin & Ansari, 2016; LeFevre & Bisanz, 1986; Lyons & Ansari,
2015; Lyons & Beilock, 2009).
An alternative, albeit not mutually exclusive, hypothesis is that

participants—even highly numerate, adult participants—struggle
to overcome a basic, exclusionary heuristic that the only ordered
sequences are count-list sequences. We refer to this hypothesis as
the exclusionary hypothesis: greater experience with the count list
constrains one’s intuitions of what constitutes numerical order to
just those sequences that match the integer count list to the exclu-
sion of all other sequences that fail to match the count-list. In other
words, one’s default intuition is to consider non-count-list sequen-
ces like 2–4–6 to be “not-in-order.” Of course, as they are defined
in the world of mathematics, numerical sequences do not have to
match the count list to be in order. For example, (H2, e, p ), odd
as it may appear, is nevertheless a perfectly valid, ordered
sequence; and indeed, this broader notion of ordinality lies at the
heart of some of the most famous proofs in mathematics (for
instance, Cantor’s work on countable and uncountable infinities).
However, the issue here is not whether such sequences should be
considered valid ordered sequences, but rather the notion that par-
ticipants—even highly educated, numerically literate adults—may
struggle to overcome the strong link between the count list and
what it means for numbers to be ordered. This strong association
may in turn create an exclusionary heuristic that must be overcome
to extend one’s notion of ordinality to include non-count-list
sequences that are in fact valid ordinal exemplars.
In the current study, we probe the idea that the influence of the

count list goes beyond actual count-list sequences, and forms the
broader conceptual foundation of what it means for numbers to be
in order in the first place. This idea in turn may have implications
for how humans think about numbers in general, insofar as ordi-
nality plays a foundational role in numerical and mathematical

thinking. To our knowledge, however, this notion remains
untested. To do so here, we modified an existing ordinal verifica-
tion paradigm commonly used in the literature by manipulating
the rules determining which sequences were to be classified as “in-
order” versus “not-in-order.”’ We reasoned that when a new rule
matched participants’ underlying heuristic or intuition about what
constitutes an ordered sequence, performance should improve;
when a rule created a mismatch, performance should suffer. More-
over, by comparing the relative magnitude of facilitation and
exclusionary effects, we could thus also determine whether the
count list influences ordinal processing of numbers primarily by
privileging count-list sequences, by disadvantaging non-count-list
sequences, or both.

Explaining the Reverse Distance Effect

One implication of an exclusionary heuristic that count-list
sequences are the only ordered sequences is an alternative expla-
nation for a now classic behavioral and neural effect seen in ordin-
ality judgment tasks. When judging the ordinality of (symbolic)
numbers, participants tend to be slower and less accurate when
numbers are numerically farther apart: 2–4–6 is harder than 3–4–5
(e.g., Franklin & Jonides, 2009; Franklin et al., 2009; Goffin &
Ansari, 2016; Lyons & Ansari, 2015; Lyons & Beilock, 2013;
Turconi et al., 2006). This phenomenon is referred to as a reverse
distance-effect (RDE) because it reverses the pattern typically seen
for cardinality judgments (determine which quantity is numeri-
cally greater) in which numerically closer pairs (7 vs 8) are harder
to judge than numerically farther pairs (6 vs 9), (Buckley & Gill-
man, 1974; Moyer & Landauer, 1967).

A leading explanation for the RDE, consistent with the facilita-
tory hypothesis, rests on the notion that repeated practice with and
exposure to the integer count list instills strong memory traces for
these sequences (e.g., 3–4–5), and so participants are particularly
adept at verifying the ordinality of sequences that match these
memory traces. The root cause of the RDE is thus privileged, effi-
cient processing of these sequences (e.g., Bourassa, 2014; Franklin
et al., 2009; Turconi et al., 2006). An alternative view, per the
exclusionary hypothesis, is that participants must overcome an
exclusionary heuristic that the only ordered sequences are count-
list sequences. Being forced to inhibit this default response to clas-
sify sequences such as 2–4–6 as in-order leads to poor perform-
ance on these trials.

Data from existing paradigms cannot distinguish between these
hypotheses, however, because the RDE is typically calculated by
computing the difference in performance on count-list trials (e.g.,
3–4–5) versus ordered, non-count-list trials (e.g., 2–4–6), making it
fundamentally ambiguous whether the difference is driven by “good”
performance in one Condition or “poor” performance in the other (or
both). In other, similar situations, such as computing facilitation and
interference effects in the Stroop effect, one often compares perform-
ance on congruent and incongruent trials, respectively, to a neutral
condition (e.g., one where all words are in white font on a black
screen). In ordinality verification paradigms no such neutral condition
is immediately forthcoming. For instance, nonordered trials (e.g.,
3–5–4, 2–6–4) are not a truly neutral comparison condition as they
differ in terms of both ordinality and pairwise-distance.

The novel paradigm developed here allowed us to overcome
this limitation by comparing performance on the same sequences
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under different rule conditions. The different rule conditions were
designed to independently test the hypothesized influences of a
count-list advantage (as predicted by the facilitatory hypothesis)
and a non-count-list disadvantage (predicted by the exclusionary
hypothesis). If one were to eliminate the count-list advantage, this
should eliminate the RDE. Similarly, if one were to eliminate the
non-count-list disadvantage, this should also eliminate the RDE.
Finally, because this approach tests each hypothetical source of
the RDE separately, it also allows for the possibility that both a
count-list advantage and a non-count-list disadvantage contribute
to the RDE (i.e., the two hypotheses are not mutually exclusive).

Current Study

Current thinking posits that ordinal processing of numbers in
children and adults is linked strongly to repeated practice with the
integer count list. Here we suggest that this influence goes beyond
count-list sequences themselves, and forms the broader conceptual
foundation of people’s understanding of what it means for num-
bers to be ordered in the first place. Specifically, we tested two dif-
ferent—albeit not mutually exclusive—hypotheses on how the
count list shapes ordinal thinking (namely, the facilitatory and
exclusionary hypotheses, as described above). To do so, we modi-
fied a standard ordinality verification task (in which participants
judge whether sequences of three numbers are in numerical order),
by manipulating the rules by which participants had to classify dif-
ferent types of number sequences as in-order versus not-in-order.
As a secondary consequence, this approach also allows us to probe
competing explanations for the source of the RDE. Furthermore,
we probe whether the count list influences highly familiar, over-
learned sequences (e.g., 1–2–3) in a different manner than less fa-
miliar sequences (e.g., 29–30–31).

Testing Different Influences of the Count List on Ordinal
Processing

By definition, numerical order does not require that sequences
match the count list to be considered “in order” (e.g., 3–4–5,

2–4–6 and H2–e–p are all in-order; Figure 1, gold [light gray]
column), and that is how the numerical ordering task is typically
administered (e.g., Franklin et al., 2009; Lyons & Beilock, 2009).
However, this approach does not allow one to distinguish between
the facilitatory and exclusionary hypotheses outlined above. To
overcome this limitation, we modified the rules for what sequences
should be classified as in-order versus not in-order.

The facilitatory hypothesis states extensive experience with the
count list has created strong memory traces for count-list sequen-
ces (e.g., 3–4–5), allowing one to readily verify such sequences as
being in-order. To test this idea, we modified the rules of the
standard ordinality verification task such that count-list sequences
must now be classified as “not-in-order.” Per the facilitatory hy-
pothesis, participants should have a strong default inclination to
view count-list sequences like 3–4–5 as in-order, which they must
now inhibit, and so performance should be adversely affected. In
the incongruent-rule condition (Figure 1, red [white] column), tri-
als that do match the count list such as 3–4–5 were to be classified
as not-in-order (note that non-count-list trials like 2–4–6 were
classified as in-order in this condition, which is the same as in the
standard-rule condition). Hence, according to the facilitatory hy-
pothesis, relative to the standard condition, we expected perform-
ance to be worse (higher response times and errors) for count-list
sequences in the incongruent condition.

According to the exclusionary hypothesis, participants’ default
(or initial) intuition is to see non-count list sequences like 2–4–6
as not-in-order, even if they in fact are. Adults must overcome an
initial heuristic that the only ordered sequences are count-list
sequences to correctly complete the standard version of the task.
With this in mind, modifying the rules of the task so that partici-
pants are permitted to classify sequences like 2–4–6 as not-in-
order (Figure 1, blue [dark gray] column), should improve per-
formance relative to the standard version of the task. This is
because sequences like 2–4–6 should now match participants’
default intuition that these sequences are not in order. Further-
more, participants no longer need to distinguish between different
types of sequences that they see as nonordered (2–4–6 and 4–6–2

Figure 1
Overview of the Various Stimulus Types and the Three Different Ordinality Rule
Conditions

Note. Example stimuli are provided in parentheses. A � indicates that stimulus-type was
to be counted as “in-order” for that ordinality-rule condition; an � indicates that stimulus-
type was to be counted as “not-in-order” for that condition. See the online article for the
color version of this figure.
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can now both be classified as not-in-order). Hence, for the congru-
ent-rule condition (Figure 1, blue [dark gray] column), we pre-
dicted an improvement in performance on non-count-list (but still
ordered) sequences, relative to the standard condition (Figure 1,
gold [light gray] column).
Finally, this approach allows for the possibility that both the

facilitatory and exclusionary hypotheses are correct. It may be that
the influence of the count list on ordinal processing is twofold:
adults are predisposed to view count-list sequences as in-order and
tend to view all other sequences as not-in-order even when they
actually are. Including both the congruent- and incongruent-rule
conditions allowed us to test for both influences independently.
Furthermore, we can also compare the magnitudes of the two hy-
pothetical influences to determine which exerts the strongest effect
on adult participants’ intuitions about numerical order.

Testing Explanations of the Reverse Distance Effect

The reverse distance effect (RDE) refers to better performance
(lower response times and errors) on count-list trials (e.g., 3–4–5)
relative to ordered, non-count-list trials (e.g., 2–4–6) in a standard
ordinality verification paradigm. However, it is unclear whether
the RDE is driven by relatively good performance on the count-list
trials, poor performance on the non-count-list trials, or both. On
the one hand, according to the facilitatory hypothesis, the RDE
may be driven by good performance on sequences that do match
the count-list (e.g., 3–4–5). In that case, we would expect the RDE
to be reduced or even eliminated in the incongruent-rule condition
because participants must judge these count-list trials to be not-in-
order, and the added difficulty of having to inhibit the tendency to
see these items as being in-order should reduce performance. This
reduction in performance should thus reduce or eliminate the gap
between count-list and non-count-list trials, thereby reducing or
eliminating the RDE. On the other hand, according to the exclu-
sionary hypothesis, the RDE may be driven by poor performance
on sequences that do not match the count-list (e.g., 2–4–6). In that
case, we would expect the RDE to be reduced or even eliminated
in the congruent-rule condition because participants are allowed to
judge these non-count-list trials as not-in-order, and the increased
ease of yielding to the tendency to see these items as being not-in-
order should improve performance. This improvement in perform-
ance should thus reduce or eliminate the gap between count-list
and non-count-list trials, hence reducing or eliminating the RDE.
Finally, it is important to note that the two mechanisms proposed
here are not mutually exclusive; both effects may be present,
which would imply that RDEs arise from both sources.

Generalizability and Mechanism

A major part of the story here is that rehearsal of the count list
leads to increased familiarity with numerical sequences that match
the count list (LeFevre et al., 1991). It is unclear whether this fa-
miliarity is in terms of representing specific number sequences
(1–2–3, 4–5–6, etc.) in memory (Bourassa, 2014; Sella et al.,
2020); or with a more general process, such as reciting the count
list itself. Because participants are expected to have less overall
exposure to (Dehaene & Mehler, 1992) and less experience recit-
ing (Wynn, 1990) the count list at higher (double-digit) numbers,
we can probe these mechanisms by including both single- and
double-digit sequences as stimuli. Specifically, we can assess

whether the presence of a count-list advantage and/or a non-count-
list disadvantage obtains only in highly familiar, overlearned
sequences (single-digits) or generalizes to sequences where ordinal
processing is less able to rely on direct memory retrieval (double-
digits). If an effect is specific to overlearned single-digit sequen-
ces, this would suggest it is driven more by retrieval of specific or-
dinal representations; if an effect generalizes to less familiar
double-digit sequences, this would suggest a more general process
is required to explain the effect, such as verbal recitation or pair-
wise comparison. In this way, we can test the specific mechanisms
—representation-based or process-based—by which the count-list
exerts different influences on how we process the ordinality of
numbers.

Method

Participants

Data were collected from 61 Georgetown University students
and members of the Georgetown community. One participant did
not comply with instructions and so was omitted from analysis.
We thus proceeded with a total N of 60 participants (Mage = 21.8
years, SD = 4.7; 37 female).

Procedure

All tasks and procedures were approved for use with human
subjects by the Georgetown University Institutional Review Board
(IRB). The total study took approximately 1 hour to complete; and
participants were compensated either $10 or one research credit
for their time. The ordinality judgment task that is the main focus
here was presented as part of a larger experiment, which included
a mental arithmetic and an antisaccade task. As these latter two
tasks are part of a different study and are not relevant to the theo-
retical questions we are addressing here, they are omitted from
analysis in the main text. Due to reviewer interest, correlations
between each trial type in the ordinal verification task and per-
formance on the mental arithmetic task are provided in Appendix
D. Importantly, all tasks were presented in randomized order to
prevent context or sequence effects from biasing the results dis-
cussed here.

Stimuli were presented on a 24 Dell flat-screen monitor with a
native 1920 3 1080 resolution, a 60 Hz refresh rate, situated at
approximately 18 inches from the seated participant.

Numerical Ordinality Judgment Task

Stimulus Details. The overall task design was modeled after
the ordering task in Lyons and Beilock (2011). In this task, partici-
pants judged whether three numbers presented horizontally should
be considered in-order or not-in-order (from left to right). Partici-
pants pressed one of two keys (C or M on a standard U.S. English
keyboard) to indicate their judgment. The meaning of each button
(in-order or not-in-order) was randomized across participants;
once assigned a given configuration, it was kept consistent across
the study for that participant. Stimuli were presented in white font
on a black background in 27-point fixed-width (Consolas) font,
with three spaces between each number. The three numbers
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together subtended to about 7.1° of visual angle for single-digit
stimuli, and about 8.7° for double-digits.
For each trial, the three numbers were presented for 3 seconds

or until the participant responded. If the 3 seconds elapsed, the
program moved on automatically. Participants were informed in
the instructions section that these trials would be counted as incor-
rect and thus encouraged to respond within the 3-second time
frame. Trials with no response were omitted from analysis (.8% of
all trials). The intertrial interval (fixation) randomly varied
between 800 and 1,200 ms. In addition, as overall mean response
times were 1,076 ms (SD = 437), we semiarbitrarily deemed
response times less than 200 ms to be implausible reflections of
actual on-task performance, and so omitted these trials (.1% of all
trials). In sum, less than 1% of all trials were omitted from
analysis.
Trials were divided equally into single- and double-digits (56

trials of each per condition), which were randomly intermixed. On
single-digit trials, all three numbers were in the range 1–9. On
double-digit trials, all three numbers were two-digits in the range:
17–52. In keeping with prior research, the three double-digit num-
bers always crossed a decade (e.g., 28–30–32, 48–49–50) to pre-
vent participants from simply ignoring the digit in the decade
position (Franklin & Jonides, 2009; Franklin et al., 2009; Lyons &
Ansari, 2015).
Trials were divided into three different ordinality conditions:

count-list, non-count-list and mixed. See Appendix A (Table A1)
for a complete list of trials.
Count-list trials comprised sequences of three numbers that

matched the count list (e.g., 3–4–5, 28–29–30). More precisely,
the numerical distance between the left and the middle and the
middle and the right numbers was held constant at 1. Count-list tri-
als were always presented in their count-list permutations (small-
est-median-largest), from left to right.
Non-count-list trials were trials that, by most mathematical defi-

nitions were in-order, in that all three numbers increased in magni-
tude from left to right. However, sequences were not a direct
match with the count list in that the sequences skipped either one
or two numbers (e.g., 2–4–6, 27–30–33). More precisely, the nu-
merical distance between the minimum and median, and between
the median and maximum numbers in a given sequence was
always held constant, and the numerical distance between the left
and middle and middle and right numbers was either 2 or 3.
Mixed trials were also included as these are a customary aspect

of the standard configuration of the ordinality verification task and
provide a necessary foil to maintain the validity of the task. For
instance, because one responds in-order to both count-list and non-
count-list trials in the standard-rule condition, it is necessary to
have trials where the correct response is not-in-order so that all tri-
als do not have the same correct response. To this end, mixed trials
comprised the same sequences from the count-list and non-count-
list trials, but with their order permuted such that they no longer
were increasing from left to right (e.g., 4–5–3, 30–33–27). In
tables and figures, Mixed1 refers to permutations of count-list trials
with a numerical distance of 1, and Mixed2,3 refers to permutations
of non-count-list trials with numerical distances of 2 or 3. Mixed
trials also serve the useful role of preventing participants from fo-
cusing on any pair of numbers, and instead encourage them to pro-
cess the overall ordinality of the entire sequence (Lyons &
Beilock, 2009). Thus, mixed permutations were chosen so that no

single pair of positions was guaranteed to be either increasing or
decreasing.

Ordinality Rule Manipulation. Participants completed three
different conditions for this task. The main manipulation distin-
guishing each condition concerned what types of trials were to be
classified as in-order versus not-in-order (specifics of each condi-
tion follow below). See Appendix B for complete instructions for
each condition. Condition order was randomized across partici-
pants. There were 112 trials of each condition, divided into two
blocks, with a brief rest provided between blocks. Prior to starting
the 112 main trials, participants first received instructions and
examples, followed by 24 practice trials. Feedback (correct or
incorrect) was given for the practice but not the main trials. The
probability of an in-order or not-in-order (C or M key) response
was held equal (50/50) across all conditions. Finally, note that ac-
curacy was always defined as adherence to the rules for that
condition.

Standard Ordinality Rule. In the Standard-Rule condition,
the rule governing what counted as in-order was based purely on
numerical value. Thus, any sequence that was in fact numerically
increasing (left-to-right) was to be considered in-order regardless
of the numerical distance between numbers in the sequence. Thus,
both count-list (e.g., 3–4–5) and non-count-list trials (e.g., 2–4–6)
were to be classified as in-order. This condition mimics that used
widely throughout the literature, which is why we refer to it here
as the standard ordinality rule condition. To maintain equal proba-
bility of yes/no responses, there were 56 trials that counted as in-
order: 28 count-list and 28 non-count-list trials. There 56 trials
that counted as not-in-order were all drawn from the mixed set of
trials, with an equal representation of permutations of the count-
list trials (Mixed1) and permutations of non-count-list trials
(Mixed2,3). All of the above subconditions were divided equally
between single- and double-digit trials. All trial types comprised
112 total trials for this condition, randomly intermixed and pre-
sented over two blocks.

Congruent Rule. In the congruent-rule condition, only count-
list trials (e.g., 3–4–5) were to be considered in-order. All other tri-
als, including non-count-list trials (e.g., 2–4–6) were to be consid-
ered not-in-order. To maintain equal probability of yes/no
responses, there were 56 trials that were considered in-order (all
drawn from the count-list set), 56 trials that were considered not-
in-order (28 drawn from the non-count-list set and 28 drawn from
the mixed set—with equal representation of count-list and non-
count-list permutations among mixed trials). All of the above sub-
conditions were divided equally between single- and double- digit
trials. All trial types comprised 112 total trials for this condition,
randomly intermixed and presented over two blocks.

Incongruent Rule. In the incongruent-rule condition, only
non-count-list trials (e.g., 2–4–6) were to be considered in-order.
All other trials, including count-list trials (e.g., 3–4–5), were to be
considered not-in-order. To maintain equal probability of yes/no
responses, there were 56 trials that counted as in-order (all drawn
from the non-count-list set), 56 trials that counted as not-in-order
(28 drawn from the count-list set and 28 drawn from the mixed set
—with equal representation of count-list and non-count-list per-
mutations among mixed trials). All of the above subconditions
were divided equally between single- and double-digit trials. All
trial types comprised 112 total trials for this condition, randomly
intermixed and presented over two blocks.
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Methodological Considerations

Note that the probability of a correct in-order and a not-in-order
was the same (50/50) across all conditions, meaning that differen-
ces between conditions cannot be explained by differences in the
prevalence of “yes” vs “no” distributions. Similarly, because the
mapping between a given hand and a given classification (left = in-
order, right = not-in-order; or vice-versa) was counterbalanced
across participants, differences across conditions cannot be
explained by handedness. However, achieving a 50/50 distribution
of in-order and not-in-order responses required an asymmetrical
number of close- and far distance trials in the congruent-rule and
incongruent-rule conditions. Importantly therefore, beyond testing
key hypotheses of interest, the congruent and incongruent condi-
tions also serve as important controls for one another. For instance,
one might argue that differences between the standard and congru-
ent or incongruent conditions could be driven by an asymmetry
between response-demands and stimulus categories. However, this
asymmetry was present in both the congruent and incongruent con-
ditions (only one category is associated with the in-order option,
and three with the not-in-order option). Thus, if the two conditions
alter performance in different ways, it is difficult to see how an
asymmetry simply in how many categories were assigned to each
response option. Instead, results would be better explained by
which categories are assigned to which response option, as is the
case for the facilitatory and exclusionary hypotheses.
Similarly, two of our key comparisons are between count-list

trials in the standard and incongruent conditions (red [dark gray]
bars, Figure 2), and between non-count-list trials in the standard
and congruent conditions (blue [light gray] bars, Figure 2). One
might object that, in each case, one is comparing a Yes response
(in-order) with a No response (not-in-order). Importantly, our key
predictions, from the facilitatory and exclusionary hypotheses, are
that these contrasts should yield effects in opposite directions: a
negative difference for Count-ListStandard – Count-ListIncongruent,
and a positive difference for Non-Count-ListStandard – Non-Count-
ListCongruent. Because both contrasts involve comparing between
Yes/No responses in the same manner, an explanation based solely
on response-Type could not explain the predicted results.

Measurement

Performance on this task was measured in terms of response
times (ms) and error rates (proportion wrong), which were com-
bined into a single composite measure. First, this approach halved
the number of statistical tests that need to be performed, thus
reducing the likelihood of Type I errors without introducing the
need to correct for multiple comparisons (thus protecting some-
what against Type II errors as well). Second, this approach implic-
itly controlled for speed–accuracy trade-offs. Response times and
error rates were combined here using the combined performance
measure (CP), introduced by Lyons et al. (2014): CP = RT(1 þ
2ER), where RT = response time and ER = error rate for a given
participant, on a given condition/trial type. As chance performance
on this task corresponds to an ER of .5, this formula linearly
reweights RT as a function of ER, running from CP = RT for per-
fect accuracy, to CP = 2*RT for chance accuracy. Note that this
formulation makes no assumptions about underlying distributions
(as one does for instance in the case of combining z-scores), and it
combines the two measures in a linear manner (in contrast to the

nonlinear weighting implied by metrics such as inverse efficiency,
which introduces assumptions about which side of the error distri-
bution should be weighted as more consequential). In the interest
of full transparency, however, response times and error rates (bro-
ken down into relevant condition means) can be found in Appen-
dix C.

Bayesian Statistics

We conducted Bayesian t-tests using the default prior of .707
(Faulkenberry et al., 2020; Morey & Rouder, 2015) to quantify the
probability of support in favor or against our hypotheses. The
Bayes Factor (BF10) is reported for each test, which is the ratio
of the likelihood of data fitting the alternative hypothesis relative
to the null hypothesis (BF01 is the inverse and provides support for
the null relative to the alternative hypothesis). For example, a
BF10 of 1 would provide equal support for both the null and alter-
native hypothesis, whereas a BF10 of 3 suggests that the data are 3
times more likely in favor of the alternative hypothesis relative to
the null. Bayes Factors greater than 10 are considered “strong evi-
dence,” and Bayes Factors greater than 30 are considered “very
strong evidence” (Jeffreys, 1961).

Data Availability

Data are publicly available via the Open Science Framework:
https://osf.io/z4ngj/.

Results

Analysis 1: The Impact of Different Ordinality Rules on
Count-List and Non-Count-List Performance

Our primary question was whether altering the rules by which
count-list and non-count-list trials impacted the ease or difficulty
with which participants classified these trials as in-order or not-in-
order. In particular, we tested two (nonmutually exclusive) hypoth-
eses regarding how the count list influences ordinal processing of
numbers. Furthermore, we tested for these influences separately in
single- and double-digit numbers to assess the specific mechanisms
—representation-based or process-based—by which the count list
exerts different influences on how individuals process the ordinal-
ity of numbers. If an effect is specific to overlearned single-digit
sequences, this would suggest it is driven more by retrieval of spe-
cific ordinal representations; if an effect generalizes to less familiar
double-digit sequences, this would suggest the influence of the
count list in this case operates via the more general procedure or
process of rehearsing the count list.

Facilitatory Hypothesis

We first tested the facilitatory hypothesis of whether the count
list influences ordinality by facilitating recognition of count-list
sequences as in-order. In the incongruent-rule condition, partici-
pants were told to classify count-list sequences (e.g., 3–4–5) as
though they are not-in-order. From this perspective, performance
on count-list trials should be worse in the incongruent condition
relative to the standard-rule condition because participants were
forced to classify these sequences in a manner that contradicted
their (hypothesized) intuition about what it means for numbers
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to be in-order. Specifically, we computed the difference as (stand-
ard – incongruent), so a significant negative effect would indicate
worse performance in the latter condition relative to the former.
From Figure 2 (red [dark gray] bars), we see a relatively small but
significant effect for single-digits [t(59) = �2.04, p = .046, d =
�.26, BF10 = .97; left red [dark gray] bar , 0], but no significant
effect for double-digits [t(59) = �.16, p = .872, d = �.02, BF10 =
.14; right red (dark gray) bar not different from 0]. The effect for
single-digits was marginally greater than that for double-digits
[t(59) = 1.97, p = .054, d = .25, BF10 = .85; the left red (dark gray)
bar was marginally more negative than the right red (dark gray)
bar in Figure 2].

Exclusionary Hypothesis

We next tested the exclusionary hypothesis of how the count list
influences ordinal processing. Recall that in the congruent-rule con-
dition, participants were told to classify non-count-list sequences
(e.g., 2–4–6) as though they are not-in-order. From this perspective,
we should see performance on non-count-list trials improve in the
congruent relative to the standard condition because participants
were, in theory, allowed to classify these sequences in a manner in
keeping with their (hypothesized) intuition about what it means for
numbers to be not-in-order. Specifically, we computed the difference

as (standard � congruent), so a significant positive effect would
indicate better performance in the latter condition relative to the for-
mer. From Figure 2 (blue [light gray] bars), we can see relatively
large effects in the predicted direction for both single-digit [t(59) =
5.71, p = 4.0E � 07, d = .74, BF10 = 3.8E þ 04; left blue (light
gray) bar . 0] and double-digits [t(59) = 8.05, p = 4.4E-11, d =
1.04, BF10 = 2.2E þ 08; right blue (light gray) bar . 0]. In fact, the
effect was significantly greater for double- relative to single-digit
sequences [t(59) = 4.76, p = 1.3E � 05, d = .61, BF10 = 1.4E þ 03;
the right blue (light gray) bar was significantly higher than the left
blue (light gray) bar in Figure 2].

In sum, we found relatively weak and inconsistent evidence to sup-
port the facilitatory hypothesis—that participants are predisposed to
see count-list sequences as in-order. This effect obtained only in sin-
gle-digit sequences, indicating it operates primarily via matching spe-
cific count-list sequences with representations of those sequences
stored in memory. By contrast, we found strong and consistent evi-
dence in support of the exclusionary hypothesis—that participants’
default intuition is to see non-count-list sequences as not-in-order.
This effect extended to double-digit sequences (and in fact was
slightly stronger), suggesting the exclusionary influence of the count-
list on ordinal processing operates via a more general process, such as
verbal recitation or pairwise comparison.

Figure 2
Impact of the Different Ordinality Rules (Incongruent and Congruent) on
Performance, Relative to Performance in the Standard-Rule Condition

Note. Recall that the incongruent-rule condition altered only the rule for count-list trials,
and the congruent-rule condition altered only the rule for non-count-list trials; hence, only
the relevant trial type is shown here in each case (for all trials, see Table 1). A positive
value indicates better performance on that trial type than in the standard condition; a nega-
tive value indicates worse performance on that trial type than in the standard condition. The
graph shows results from paired t-tests, converted to effect-sizes (ds), where the null (no dif-
ference) corresponds to d = 0. Dotted lines indicate an effect-size corresponding to p = .05;
the thicker dashed line indicates an effect-size corresponding to p = .001. See the online arti-
cle for the color version of this figure.
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Comparing Count-List and Non-Count-List Effects

From the previous section (and from Figure 2), it appears that
the tendency to see non-count-list sequences (e.g., 2–4–6) as not-
in-order may be stronger than the tendency to see count-list
sequences (e.g., 3–4–5) as in-order—that is, the blue (light gray)
bars in Figure 2 appear to be further from 0 than are the red (dark
gray) bars. To test this idea more formally, it was important to
account for the fact that the two effects were in opposite directions
(one with a positive and the other with a negative arithmetic sign).
To preserve the correlational structure between conditions (which
is crucial for properly estimating effect sizes in within-subjects
designs), one must compute the direct (nonreflected), row-wise
subtraction between variables. However, because we know the
mean differences are positive in one case and negative in the other,
a comparison against 0 will lead to an inflated estimate. Hence, we
instead compared difference scores against twice the absolute
mean of the smaller effect. Taking single-digits as an example, for
non-count-list trials, the mean difference between congruent-rule
and standard-rule conditions was 1145.0 – 889.3 = 255.3; for
count-list trials, the mean difference between incongruent-rule and
standard conditions was 1025.1 � 1102.2 = �77.1 (values are
taken from Table 1). This computation results in a vector of differ-
ence scores with a mean value of 255.3 � �77.1 = 332.1, which,
we argue, is biased because of the opposing signs of the mean
effects (255.3 and �77.1). To account for this bias, rather than
compare these difference scores against 0, we compare them
against 255.3 – j�77.1j = 2*j�77.1j = 154.2. Note that this is both
the more conservative test, and, we argue, provides the more accu-
rate estimate of the true difference between the magnitudes of
each effect, by taking into account both the correlational structure
and their expected opposing signs.
Using this approach, results demonstrated that the tendency to

see non-count-list sequences (e.g., 2–4–6) as not-in-order was
indeed stronger than the tendency to see count-list sequences (e.g.,
3–4–5) as in-order. This was true for both single-digits [t(59) =
4.43, p = 4.2E � 05, d = .57, BF10 = 489] and for double-digits
[t(59) = 6.65, p = 1.1E � 08, d = .86, BF10 = 1.2E þ 06].

Analysis 2: Explaining the Reverse Distance Effect
(RDE)

Here we assessed whether the RDE is driven by especially poor
performance on ordered sequences that do not match the count list
(e.g., 2–4–6), by especially good performance on ordered sequen-
ces that match the count list (e.g., 3–4–5), or both. In the first case,

consistent with the facilitatory hypothesis, we would expect the
RDE to be eliminated in the incongruent-rule condition due to
worse performance on count-list trials. In the second case, consist-
ent with the exclusionary hypothesis, we would expect the RDE to
be eliminated in the congruent-rule condition due to improvement
in performance on non-count-list trials. In the third case, we would
expect the RDE to be eliminated in both conditions (support for
both hypotheses).

Distance effects were calculated by subtracting non-count-list
(i.e., “far” numerical distance) from count-list (i.e., “close” numer-
ical distance) performance. Hence, in Figure 3, a positive value
indicates a canonical distance effect and a negative value indicates
a RDE. Note that the RDE is typically seen only in ordered trials
(i.e., not in mixed trials), so as with Analysis 1, here we focus on
count-list and non-count-list trials. From the gold (light gray) bars
in Figure 3, we see medium to large RDE effects in the standard-
rule condition for both single-digits [t(59) = �4.13, p = 1.1E �
04, d = �.53, BF10 = 192; left gold (light gray) bar significantly ,
0] and for double-digits [t(59) = �6.27, p = 4.5E � 08, d = �.81,
BF10 = 2.9E þ 05; right gold (light gray) bar significantly , 0],
which replicates previous work (Franklin & Jonides, 2009; Frank-
lin et al., 2009; Goffin & Ansari, 2016; Lyons & Ansari, 2015;
Lyons & Beilock, 2013; Turconi et al., 2006).

Facilitatory Hypothesis

In the incongruent-rule condition, the RDE was also eliminated
(i.e., was nonsignificant) for single-digits [t(59) = �1.08, p = .284,
d = �.14, BF10 = .25; left red (light gray) bar in Figure 3 was not
different from 0], and the magnitude of the RDE was significantly
reduced in the incongruent relative to the standard condition [t(59) =
2.25, p = .028, d = .29, BF10 = 1.45; left red (dark gray) bar vs left
gold (light gray) bar in Figure 3]. For double-digits, the RDE
remained highly significant [t(59) = �5.14, p = 3.3E � 06, d =
�.66, BF10 = 5.2E þ 03; right red (dark gray) bar in Figure 3
remained significantly , 0], and the magnitude of the RDE was
only marginally reduced in the incongruent relative to the standard
condition [t(59) = 1.75, p = .085, d = .23, BF10 = .60; right red (dark
gray) bar vs right gold (light gray) bar in Figure 3].

Exclusionary Hypothesis

In the congruent-rule condition, the RDE was eliminated (i.e.,
was nonsignificant) for single-digits [t(59) = .89, p = .375, d = .12,
BF10 = .21; left blue (black) bar in Figure 3 was not different from
0], and the magnitude of the RDE was significantly reduced in the
congruent relative to the standard condition [t(59) = 3.54, p =

Table 1
All Subcondition Means

Trial type

Single-digit Double-digit

Standard Incongruent Congruent Standard Incongruent Congruent

Count-list 1,025 (39) 1,102 (42) 911 (37) 1,229 (45) 1,235 (45) 1,078 (37)
Non-count-list 1,145 (48) 1,134 (40) 889 (36) 1,474 (61) 1,412 (46) 1,015 (41)
Mixed (1) 1,284 (48) 1,259 (60) 1,115 (47) 1,506 (46) 1,504 (65) 1,324 (47)
Mixed (2, 3) 1,166 (41) 1,369 (57) 805 (25) 1,505 (48) 1,726 (66) 940 (33)

Note. Table 1 gives all subcondition means and standard errors (the latter in parentheses). A higher value indicates poorer performance. The two theoret-
ically central subconditions in Analyses 1 and 2 (Count-List and Non-Count-List) are shown in bold. The specific trial sub-types isolated in Analysis 1 are
also underlined. See Analysis 3 for treatment of Mixed trials.
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7.9E � 04, d = .46, BF10 = 33.00; left blue (black) bar vs left gold
(light gray) bar in Figure 3]. For double-digits, the RDE in fact
flipped to become a canonical distance effect (better performance on
non-count-list, 2–4–6, relative to count-list, 3–4–5, trials) [t(59) =
2.67, p = .010, d = .35, BF10 = 3.57; right blue (black) bar in Figure
3 was significantly .0]. The distance effect in the congruent condi-
tion was significantly different from that observed in the standard
condition [t(59) = 6.52, p = 1.7E � 08, d = .84, BF10 = 7.3E þ 05;
right blue (black) bar vs right gold (light gray) bar in Figure 3].
In sum, we found that for highly overlearned sequences (single-

digits), the RDE typically seen in the literature (akin to the standard
condition) appears to result from a combination of poor perform-
ance on non-count-list trials and good performance on count-list tri-
als. In other words, effects predicted by both the facilitatory and
exclusionary hypotheses account for the RDE (the third case noted
above). For less familiar sequences (double-digits), the RDE
appears to be driven primarily by poor performance on non-count-
list trials (providing sole support for the exclusionary hypothesis).

Analysis 3: Additional Effects of Altering Ordinality
Rules

Though not of direct theoretical interest, it may be of value to
examine how altering ordinality rules affected performance (rela-
tive to the standard-rule condition) on the other trial types.

The incongruent-rule condition altered the rule specifically for
count-list trials (e.g., 3–4–5). From Analysis 1 above, we saw this
rule change exerted only a small impact on count-list performance,
which was limited to single-digit sequences. Consistent with a lim-
ited effect, performance did not differ between standard and incon-
gruent conditions for non-count-list or mixed1 trials across both
single- and double-digit sequences (all ps . .15, all ds , .20, all
BFs10 , .39). Interestingly, performance was significantly worse
for mixed2,3 (far distance) trials for both single-digits [t(59) =
�4.43, p , .001, d = �.57, BF10 = 493.66] and double-digits
[t(59) = �3.76, p , .001, d = �.49, BF10 = 62.32]. Indeed per-
formance in the incongruent-mixed2,3 trials was worse than any of
the other three incongruent trial types (incongruent-count-list,
incongruent-non-count-list, incongruent-mixed1) for both single-
digit (ps, .010, ds. .34, BFs10 . 3.56) and double-digit sequen-
ces (ps , .00, ds . .51, BFs10 . 128). One possibility is that this
condition isolated non-count-list sequences as the only trials that
counted as in-order, which may have placed greater processing
demands on rejecting permutations of these trials (i.e., mixed2,3
trials). This result is broadly consistent with what we saw in the
congruent condition, where performance on mixed1 trials—permuta-
tions of count-list trials—was worse than any other trial type in that
condition for both single-digits (ps , .001, ds . .69, BFs10 . 1.3E
þ 04) and double-digits (ps, .001, ds. .81, BFs10 . 3.8E þ 05).

Although the congruent-rule condition altered the rule specifi-
cally for non-count-list trials (2–4–6 was to be treated as not-in-

Figure 3
Impact of the Different Rule Conditions on Reverse Distance Effects (RDEs)

Note. RDEs were computed as count-list � non-count-list (i.e., “close” minus “far” numerical
distance), so that a negative value corresponds to a reverse distance effect. The graph shows
results from paired t-tests, converted to effect-sizes (ds). Effects are plotted as effect-sizes, where
the null (no difference) corresponds to d = 0. Dotted lines indicate an effect size corresponding to
p = .05; thicker dashed lines indicate an effect-size corresponding to p = .001. Gray lines compare
distance effects across conditions: * p , .05. ** p , .001. � marginal (p , .10). ns = not signifi-
cant. See the online article for the color version of this figure.
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order, with rules unchanged for the other trial types), this rule
change may have affected performance on other trials. Indeed, it
appears that performance in the congruent condition improved for
all trial types (i.e., comparing the standard column with the con-
gruent column in Table 1 all ps , .001, all ds . .50, all BFs10 .
680). In other words, it appears that aligning ordinality rules to be
more in keeping with individuals’ intuitions about what constitutes
numerical order had both a strong (large effect sizes) and a perva-
sive effect on overall ordinality verification performance. Namely,
when participants are permitted to treat only count-list sequences
as in-order and all other sequences as not-in-order, performance
improved across the board, which further underscores the potential
impact this heuristic has on basic conceptions of numerical order.
In sum, analysis of the remaining trial types (i.e., those not im-

mediately central to our main hypotheses, and thus omitted from
Analyses 1 and 2) is broadly consistent with our conclusions from
the previous analyses. Namely, altering ordinality rules to conform
to the notion that only count-list trials are in-order (congruent con-
dition) has a strong and pervasive effect on processing of numeri-
cal order. Conversely, altering ordinality rules that contradict the
notion that count-list trials must be in order (incongruent condi-
tion) has a more limited influence on numerical order processing.

Discussion

There has been a steady increase in work focusing on how peo-
ple process ordinal relations between numbers, in part because this
work carries implications for our basic theoretical understanding
of what a number means, as well as our practical understanding of
the foundations upon which more sophisticated mathematics are
built. A leading explanation is that ordinal processing of numbers
is linked to repeated practice with the integer count list (Lyons et
al., 2016); but the mechanisms underlying this link remain unclear.
For instance, in standard ordinal verification paradigms, partici-
pants more rapidly and accurately verify that count-list sequences
like 3–4–5 are in-order than non-count-list sequences such as
2–4–6 (aka, the reverse distance effect, RDE). However, it is
unclear whether this effect is due to strong count-list processing or
poor non-count-list processing, or whether the count list influences
ordinal processing in an exclusionary manner, creating a tendency
to view anything that does not match the count-list as not-in-order.
Here we modified the standard ordinal verification paradigm in
terms of the rules determining which sequences were to be classi-
fied as in-order versus not-in-order, which allowed us to test each
of these hypotheses in a nonmutually-exclusive manner. In turn,
this approach allowed us to probe the ultimate source of the RDE,
a hallmark of ordinal processing. Finally, examining both highly
familiar, overlearned single-digit sequences and less familiar dou-
ble-digit sequences, we probed the specific mechanisms—repre-
sentation-based or process-based—by which the count list exerts
different influences on how we process the ordinality of numbers.

Facilitatory Versus Exclusionary Hypotheses

We reasoned that if participants default to seeing ordered, non-
count-list sequences (e.g., 2–4–6) as not-in-order, then creating a
task condition that allowed them to respond in agreement with this
heuristic—to be able to consider these sequences as indeed not-in-
order, as was the case in the congruent-rule condition—would

facilitate performance (relative to the standard-rule condition). That
is exactly what we found: participants responded substantially
(effect-sizes. .7) more efficiently (lower combined response times
and error rates) in the congruent than in the standard condition.
Importantly, this result obtained for both single-digit (d = .74, p ,
.001) and double-digit sequences (d = 1.04, p , .001), indicating it
more likely stems from the process of reciting the count list itself
rather than from memorizing specific, overlearned sequences.
Instead, an exclusionary heuristic by which all non-count-list
sequences are initially perceived as not-in-order (even when they
actually are) seems to comprise both a substantial and ubiquitous
aspect of how literate, adult participants think about the ordinal-
ity of numbers (see Figure 2).

By contrast, we found only minimal evidence to support the
facilitatory hypothesis that participants’ ordinality processing was
influenced by directly matching count-list sequences with over-
learned representations stored in memory. Forcing participants to
treat count-list sequences as though they were not-in-order (incon-
gruent-rule condition) did incur a significant processing cost (rela-
tive to the standard condition), but only in the case of single-digits
(d = .26, p = .046), and not for double-digits (d = .02, p = .872).
Moreover, even in the case of single-digits, the absolute magnitude
of this effect was significantly smaller (p = 4.2E � 05) than the
boost in performance observed when participants were “permit-
ted” to classify ordered, non-count-list sequences (e.g., 2–4–6) as
not-in-order (d = .74). Thus, while we did find some evidence that
ordinal processing is tied to specific memory traces associated
with the count-list (Franklin et al., 2009; Sella et al., 2020; Turconi
et al., 2006); this link is relatively weak, and limited only to highly
overlearned single-digit quantities (Figures 2–3).

One of the first times that children encounter numbers in an or-
dered context—indeed, one of the first times many children en-
counter verbal or symbolic numbers in general—is when hearing
and reciting the list of count integers (“one, two, three, four . . .”;
Wynn, 1990, 1992). Coupled with the observation that both chil-
dren and adults are particularly adept at recognizing ordered
sequences of numbers that match the count list (e.g., 1–2–3,
29–30–31; Franklin & Jonides, 2009; Lyons & Ansari, 2015), this
has led researchers to speculate that our sense of numerical order
is strongly tied to our experience reciting the count list (Lyons et
al., 2016). What has remained unclear is precisely how the count
list shapes our sense of numerical order. Our results suggest that,
rather than a facilitatory heuristic to see count-list sequences as in-
order, instead we saw a much stronger exclusionary heuristic to
see any type of other sequence—ordered or not—as being not-in-
order. That this result was observed in highly numerate adults
(university students) is all the more striking, as it suggests that
even a decade or more experience working with increasingly com-
plex mathematics does not completely dispel the initial impulse to
see a sequence like (2–4–6) as being not in order.

Deconstructing the Ordinal Verification Task

Over the past decade, the ordinal verification task has become a
popular tool in the toolkit of numerical cognition researchers
(Franklin & Jonides, 2009; Lyons & Beilock, 2009; Turconi et al.,
2006). This is in part due to rising interest in understanding nu-
merical ordinality as distinct from numerical cardinality (Lyons et
al., 2016). Moreover, the ordinal verification task is simple enough
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that it can be used in both adults and children (Lyons & Ansari,
2015; Morsanyi et al., 2018). On a theoretical level, the task pro-
vides a reliable marker of ordinal processing in the RDE (Goffin
& Ansari, 2016); and it consistently predicts more complex nu-
merical skills such as mental arithmetic over and above the contri-
butions of other basic numerical tasks (e.g., Lyons & Beilock,
2011; Morsanyi et al., 2017; Sasanguie et al., 2017). We replicated
both of these effects here (gold [light gray] bars in Figure 3, and
Table D1, respectively). Furthermore, in the present study, we
manipulated the ordinality rules of the ordinal verification task,
which allowed us to probe the different ways in which the count
list influences ordinal processing. An additional consequence of
this approach was that it shed light on the underlying processes
that drive task performance. Below, we outline our interpretation
of how the current results shape our understanding of the relevant
factors in this increasingly popular experimental technique.
Our interpretation is that the rule conditions primarily altered

performance by impacting the procedures by which input stimuli
are checked. We propose this checking procedure follows two
steps. First, one checks the set of three input stimuli together against
a preexisting heuristic for what constitutes numerical order. Second,
if necessary, one engages a secondary check, based on “brute force”
processing (such as verbal recitation and/or pairwise comparison of
stimuli). Our main take-aways are (a) that the first check does not
include (but in fact excludes—per the exclusionary hypothesis) or-
dered trials that do not perfectly match the integer count list; (b)
this exclusion has a large impact on verification performance; (c)
the inclusionary benefit—to actual count-list trials—is relatively
small and specific to high-frequency (single-digit) numbers.
In the standard-rule condition, we saw rapid verification that

count-list stimuli are in order because one does not need to engage
the second level of checks. Performance on all other sequences—
including non-count-list (but ordered) trials—was worse because
one must engage the second round of checks. This account does
not make it clear, however, whether better performance on count-
list sequences is due—at least in part—to facilitation during the
first check. The incongruent condition gives us our answer: for sin-
gle-digits, there is some facilitation; for double-digits, there is
none. Namely, the incongruent rule change, which reverses the
ordinality rule only for count-list trials, should impair performance
on count-list trials to the extent that any facilitation these trials
might otherwise have enjoyed must now be overridden. However,
comparing count-list trials across standard and incongruent condi-
tions showed only a small decrement in performance for single-
digits, and no significant decrement for double-digits. This led us
to conclude there is only minimal support for the facilitatory hy-
pothesis. Moreover, it is important to emphasize we saw evidence
favoring the facilitatory hypothesis only for single-digits, which
are encountered more frequently (Dehaene & Mehler, 1992); and
thus are more likely to generate memorized sequences (Lyons &
Beilock, 2009; Sella et al., 2020). We interpreted this to mean
facilitation of count-list trials—during the first round of checks—
is likely driven by memory-based retrieval of specific representa-
tions. More broadly, this suggests that count-list trials in the stand-
ard condition may be indicative of memory-based factors in
numerical order processing, though this conclusion is perhaps lim-
ited to single-digit numbers.
To understand the potential negative impact of resorting to a

second round of checks for non-count-list trials, we must turn to

the congruent-rule condition. This condition essentially obviates
the need for a second round of checks because all trials that fail to
pass the first check can—correctly in this case—be classified as
not in order. This simplification of the checking procedure should
lead to an overall improvement in performance, including for non-
count-list trials, which is exactly what we saw (see Table 1). Fo-
cusing on how the count list impacts how we think about trials
that are in fact in-order, when we compared non-count-list per-
formance between the standard and congruent condition, we found
effect sizes roughly 3 times larger than the facilitatory effect in
single-digits, and still for double-digits. Recall that in this interpre-
tation, the second round of checks is necessary for non-count-list
trials only because they were excluded from the first round of
checks. The negative impact on non-count-list trial processing of
this exclusion thus appears to be both substantial and pervasive.

To infer the nature of the second round of checks, we can turn
to single- versus double-digit results in the congruent condition. If
the second round operates via checking a second set of memorized
triplet representations, then we should again see an exclusionary
effect primarily for single-digits, or at minimum the effect should
be stronger for single- relative to double-digits. Instead, we saw
the opposite: (the right blue bar was significantly higher than the
left blue [dark gray] bar in Figure 1). This suggests the need for a
more general mechanism that could apply to both single- and dou-
ble-digits (and in fact apply more strongly to the latter). Hence, we
propose either verbal recitation of sequences (“2 . . . 4 . . . 6 . . . ,”
“28 . . . 30 . . . 32”), or “brute force” pairwise comparison (e.g., 2
vs 4, 4 vs 6; 28 vs 30, 30 vs 32), which can be implemented for
any numerical sequence. To get at this final distinction (recitation
or comparison), we can turn to the mixed trials (Analysis 3). In
particular, we saw especially poor performance for the mixed23-
incongruent and mixed1-congruent trials (see Table 1). In each case,
these trials are the strongest foils to the only type of sequence that
should be classified as in-order in that condition. For instance, in the
incongruent condition, only non-count-list trials (e.g., 2–4–6,
28–30–32) are in-order; hence, mixed23-incongruent trials (e.g.,
2–6–4, 28–32–30) are the only type of sequence that is a direct per-
mutation of the only type of sequence that is a valid ordered sequence
(for that rule condition). Note that a similar situation applies to
mixed1-congruent in the congruent condition. We argue this result
suggests participants tend to engage a verbal recitation processes at
the second stage of checks, which is what makes these permutation
especially challenging. That is, permuted foils are more likely to be
mistaken for in-order trials (higher error rates) and take longer to
reject (longer RTs), as is evidenced from Tables C1 and C2.

To summarize, we argue that the standard ordinal verification task
proceeds by first checking the input set against the integer count list,
followed by a more general verbal recitation process. The congruent
obviates the need for the second verbal recitation check, thus substan-
tially improving performance across the board. The incongruent-rule
provides an additional challenge in inhibiting the first round of
checks, though this effect is much smaller and limited to sequences
that can be checked via direct retrieval mechanisms. The RDE is thus
driven by a combination of count-list facilitation and non-count-list
impediment (due to being excluded from the first round of checks)
for single-digit sequences, and seemingly entirely by a non-count-list
impediment for double-digit sequences.
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Broader Implications

On a theoretical level, these results suggest our intuitive sense
of a fundamental principle of mathematics—ordinality—is funda-
mentally shaped by overrepresentation of the count list, which
may steer one toward mathematically incorrect conclusions (the
sequence 2–4–6 is of course very much in numerical order). This
idea is reminiscent of how our intuitions based on more familiar
natural numbers (positive integers) can lead us astray when rea-
soning about less familiar, more counterintuitive types of numbers,
such as negative numbers (�1 . �2) or fractions (½ . ¼), (Sie-
gler & Lortie-Forgues, 2014). What is striking about the current
data is they suggest we should add the notion that 2–4–6 is in nu-
merical order to the list of counterintuitive numerical concepts.
A second implication—for which we also provide evidence

here—is that the counterintuitive nature of non-count-list ordered
sequences can help explain an increasingly well-known phenom-
enon in the numerical cognition literature—the reversal of the dis-
tance effect (RDE) when making ordinal judgments (Franklin &
Jonides, 2009; Franklin et al., 2009; Goffin & Ansari, 2016; Lyons
& Ansari, 2015; Lyons & Beilock, 2013; Turconi et al., 2006). In
particular, we showed (see Figure 3) that an exclusionary heuristic
against sequences like 2–4–6 and 28–30–32 plays a consistent role
in producing the RDE (single-digits: d = .42, double-digits: d =
.65), and a proclivity toward sequences like 1–2–3 and 29–30–31
contributes less so, obtaining significance only for more familiar
overlearned number sequences (single-digits: d = .28, double-dig-
its: d = .22). Thus, we propose that the more pervasive influence
responsible for the RDE in standard ordinality verification para-
digms is relatively poor performance on ordered, non-count-list
sequences (e.g., 2–4–6, 28–30–32), rather than relatively good
performance on count-list sequences (e.g., 1–2–3, 29–30–31).
A third implication concerns the question of when and how in

development the heuristic to view only numerical sequences that
match the count list as ordered. As noted above, the count list is
one of the first numerical procedures children learn—often preced-
ing even their understanding of what the number words they are
saying mean with respect to specific numerical quantities, or that
the order in which they are saying those words is of any particular
import (Wynn, 1990, 1992). Furthermore, the RDE in ordinal
judgments is present in children as early as first grade (Lyons &
Ansari, 2015). Thus, it seems possible the heuristic to see sequen-
ces like 2–4–6 as being not-in-order may be linked to the earliest
stages of children’s acquisition of number symbols. However, we
must stress that the current data are drawn from adult participants,
so any developmental inferences must be taken with a healthy
dose of skepticism. Instead, we present the idea that children as
young as 4 or 5 years of age will display a tendency to exclude
non-count-list sequences from their idea of what it means for num-
bers to be in-order (even when they are) as a speculative hypothe-
sis that may warrant future testing.
A final question to consider is whether the exclusionary heuris-

tic in ordinal processing revealed here is specific to numerical
stimuli, or whether it generalizes to other types of ordinal sequen-
ces, such as letters of the alphabet, months, days of the week, and
so on. Each of these ordinal lists is often recited according to a
standard verbal order—indeed, the list for the letters of the alpha-
bet has even been canonized as a childhood song in many lan-
guages. Moreover, non-numerical ordered sequences show RDEs

(Franklin et al., 2009; Morsanyi et al., 2017); and numerical and
non-numerical ordering appear to share overlapping neural sub-
strates (Fulbright et al., 2003; Ischebeck et al., 2008). Thus, we
hypothesize that the tendency to initially see ordered sequences
that are not part of a standard verbal recitation list as not-in-order
may be just as strong in non-numerical lists. For instance, we
hypothesize that participants will have to overcome an initial
impulse to see sequences like B–D–F, February–April–June, or
Tuesday–Thursday–Saturday as not-in-order. Of course, as with
the developmental hypothesis discussed above, the current data
cannot answer the question; rather, our data here give reason to
pose these questions in the first place, and, we hope, the impetus
for future work to address them.

Conclusion

To our knowledge, we provide the first evidence that literate
adults find the notion that sequences like 2–4–6 are in order to be
counterintuitive, which is driven by a heuristic to initially view
any sequences that do not match the count list as being not in nu-
merical order. This tendency exerts a relatively large and consist-
ent influence on ordinal verification performance (effect sizes $
.74), and it helps explain the reversal of the distance effect. We
speculate that this heuristic may have early developmental origins
tied to how children learn to intuitively think about the ordinal
arrangement of numbers via the integer count list. More broadly,
this work helps reveal key processes that shape the cognitive rules
by which people think about one of the foundational principles of
the broader system of mathematical relations—numerical order.

Context of Research

Previous work has established that ordinality is a foundational
principle of numerical representation, that it is distinct from cardinal-
ity, and that it is a strong predictor of more complex forms of mathe-
matical processing in both children and adults. But where does our
sense of ordinality come from? When children learn to recite the
count list, they are learning the specific order in which integers, in
the form of number words, should be arranged. It thus seems intuitive
that our sense of order is linked to our extensive experience counting
integers. The question, though, is how. Does one memorize specific
sequences (1–2–3, 7–8–9) that make one very good at recognizing
these specific sequences as ordered sets? Does one form a more gen-
eral heuristic: any sequence that does not match the count list is not
in order? Or both? Here we modified a popular paradigm used in the
literature to assess ordinal processing, and using this novel approach,
we demonstrate that the answer is “both” for highly familiar, over-
learned sequences of single-digit numbers. However, the data also
showed that an exclusionary heuristic (anything that does not match
the count list is not in order) is both the stronger and more wide-
spread way in which our experience with the count list influences our
sense of how numbers should—and should not—be ordered. From
prior work, we know that intuitions about numbers can lead us astray
when reasoning about less familiar, less intuitive types of numbers,
such as negative numbers (�1. �2) or fractions (½. ¼). The cur-
rent data suggest another such example, but this time in the realm of
ordinality: Even educated adults find it counterintuitive to extend
their sense of order to include sequences that deviate only slightly
from the typical count-list (e.g., 3–5–7).
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Appendix A

Complete Ordinality Task Trial List

Table A1
All Trials

Single-digit Double-digit

Left Center Right Trial type Distance Left Center Right Trial type Distance

1 2 3 Count-list 1 18 19 20 Count-list 1
2 3 4 Count-list 1 19 20 21 Count-list 1
3 4 5 Count-list 1 28 29 30 Count-list 1
4 5 6 Count-list 1 29 30 31 Count-list 1
5 6 7 Count-list 1 38 39 40 Count-list 1
6 7 8 Count-list 1 39 40 41 Count-list 1
7 8 9 Count-list 1 49 50 51 Count-list 1
1 3 5 Non-count-list 2, 3 18 20 22 Non-count-list 2, 3
2 4 6 Non-count-list 2, 3 27 29 31 Non-count-list 2, 3
4 6 8 Non-count-list 2, 3 37 39 41 Non-count-list 2, 3
5 7 9 Non-count-list 2, 3 48 50 52 Non-count-list 2, 3
1 4 7 Non-count-list 2, 3 17 20 23 Non-count-list 2, 3
2 5 8 Non-count-list 2, 3 26 29 32 Non-count-list 2, 3
3 6 9 Non-count-list 2, 3 37 40 43 Non-count-list 2, 3
1 3 2 Mixed 1 18 20 19 Mixed 1
2 4 3 Mixed 1 19 21 20 Mixed 1
3 5 4 Mixed 1 28 30 29 Mixed 1
4 6 5 Mixed 1 29 31 30 Mixed 1
5 7 6 Mixed 1 38 40 39 Mixed 1
6 8 7 Mixed 1 39 41 40 Mixed 1
7 9 8 Mixed 1 49 51 50 Mixed 1
1 5 3 Mixed 2, 3 18 22 20 Mixed 2, 3
2 6 4 Mixed 2, 3 27 31 29 Mixed 2, 3
4 8 6 Mixed 2, 3 37 41 39 Mixed 2, 3
5 9 7 Mixed 2, 3 48 52 50 Mixed 2, 3
1 7 4 Mixed 2, 3 17 23 20 Mixed 2, 3
2 8 5 Mixed 2, 3 26 32 29 Mixed 2, 3
3 9 6 Mixed 2, 3 37 43 40 Mixed 2, 3
2 1 3 Mixed 1 19 18 20 Mixed 1
3 2 4 Mixed 1 20 19 21 Mixed 1
4 3 5 Mixed 1 29 28 30 Mixed 1
5 4 6 Mixed 1 30 29 31 Mixed 1
6 5 7 Mixed 1 39 38 40 Mixed 1
7 6 8 Mixed 1 40 39 41 Mixed 1
8 7 9 Mixed 1 50 49 51 Mixed 1
3 1 5 Mixed 2, 3 20 18 22 Mixed 2, 3
4 2 6 Mixed 2, 3 29 27 31 Mixed 2, 3
6 4 8 Mixed 2, 3 39 37 41 Mixed 2, 3
7 5 9 Mixed 2, 3 50 48 52 Mixed 2, 3
4 1 7 Mixed 2, 3 20 17 23 Mixed 2, 3
5 2 8 Mixed 2, 3 29 26 32 Mixed 2, 3
6 3 9 Mixed 2, 3 40 37 43 Mixed 2, 3

Note. Table A1 provides a complete list of trials used in the numerical ordinality judgment task.
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Appendix B

Ordinality Task Instructions

Appendix B provides verbatim instructions given to partici-
pants for each of the rule conditions. During instructions, par-
ticipants were also provided with several examples for each
condition, which are noted below. In addition, following
instructions for a given condition, participants completed a
block of 24 practice trials. During the practice block, feedback
was provided after each trial (no feedback was given during the
main blocks of trials—i.e., those used for analysis here).

Standard Condition Instructions

For this part of the experiment, to count as IN-ORDER, a
set of numbers must simply be INCREASING (left–right).
Note that whether or not numbers are adjacent in the count list
does not matter for this part of the experiment. Several exam-
ples of IN-ORDER sets are listed below:

{1 2 3}
{7 8 9}
{3 5 7}
{1 4 7}
{13 16 19}
{29 30 31}
{37 40 43}
{48 49 50}
For this part of the experiment, all other sets of numbers

should be considered NOT-IN-ORDER. Several examples of
NOT-IN-ORDER sets are listed below:

{2 1 3}
{9 7 8}
{6 4 2}
{3 9 5}
{16 14 15}
{12 20 16}
{32 30 28}
{47 53 50}
[The following was shown as a reminder on the screen im-

mediately before a participant started a block of trials (practice
or main experiment).]

Remember: For this part of the experiment, ALL sets that
are increasing (e.g., 1–2–3, 2–4–6) count as in-order. All other
sets count as not-in-order.

Congruent Condition Instructions

For this part of the experiment, to count as IN-ORDER, a
set of numbers must be INCREASING (left–right) like the
count-list. Several examples of IN-ORDER sets are listed
below:

{1 2 3}
{7 8 9}
{14 15 16}
{28 29 30}
{49 50 51}

For this part of the experiment, all other sets of numbers
should be considered NOT-IN-ORDER. Note this means that
increasing, nonadjacent sets (like 2–4–6) should be considered
NOT-IN-ORDER. Several examples of NOT-IN-ORDER sets
are listed below:

{2 1 3}
{9 8 7}
{2 4 6}
{3 5 9}
{16 14 15}
{12 16 20}
{28 30 32}
{47 53 50}
[The following was shown as a reminder on the screen im-

mediately before a participant started a block of trials (practice
or main experiment).]

Remember: For this part of the experiment, ONLY sets that
are increasing and adjacent (e.g., 1–2–3) count as in-order. All
other sets count as not-in-order.

Incongruent Condition Instructions

For this part of the experiment, to count as IN-ORDER, a
set of numbers must be INCREASING (left–right), but NOT
ADJACENT.

Several examples of IN-ORDER sets are listed below:
{2 4 6}
{3 5 7}
{2 5 8}
{15 17 19}
{18 20 22}
{27 30 33}
{38 41 44}
{46 49 52}
For this part of the experiment, all other sets of numbers

should be considered NOT-IN-ORDER. Note this means that
increasing, adjacent sets (like 1–2–3) should be considered
NOT-IN-ORDER.

Several examples of NOT-IN-ORDER sets are listed below:
{1 2 3}
{2 1 3}
{7 8 9}
{2 6 4}
{9 3 6}
{14 15 16}
{21 20 19}
{27 33 33}
{47 53 50}
[The following was shown as a reminder on the screen im-

mediately before a participant started a block of trials (practice
or main experiment).]

Remember: For this part of the experiment, ONLY sets that
are increasing and NOT adjacent (e.g., 2–4–6) count as in-
order. All other sets count as not-in-order.
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Appendix C

Response Times and Error Rates

Appendix D

Correlations With Arithmetic

Table D1 shows correlations between each trial type in the
ordinal verification task and the mental arithmetic task. The
mental arithmetic task was the same as that described in
Lyons and Beilock (2011). A higher score on the mental
arithmetic task indicated better performance, so a negative
correlation indicates better ordinal verification performance
was associated with better mental arithmetic performance.

Note also that one participant was removed from this analy-
sis because they did not follow instructions on the mental
arithmetic task, and so the correlations below proceeded
with N = 59. Finally, mental arithmetic data are included in
the open-source online data repository (https://osf.io/z4ngj/),
should the interested reader wish to explore these correlations
in greater detail.

Table C1
Response Times

Trial type

Single-digit Double-digit

Standard Congruent Incongruent Standard Congruent Incongruent

Count-list 973 (33) 848 (29) 1,012 (32) 1,151 (37) 997 (31) 1,150 (33)
Non-count-list 1,039 (36) 857 (28) 1,069 (34) 1,278 (37) 978.7 (32.5) 1,299 (37)
Mixed (1) 1,128 (37) 943 (31) 1,143 (38) 1,294 (37) 1,111 (32) 1,319 (38)
Mixed (2, 3) 1,054 (30) 800 (25) 1,087 (34) 1,324 (36) 929 (33) 1,391 (39)

Note. Table C1 gives all subcondition means and standard errors (the latter in parentheses) in terms of response times (RTs).

Table C2
Error Rates

Trial type

Single-digit Double-digit

Standard Congruent Incongruent Standard Congruent Incongruent

Count-list 3.3 (0.9) 3.9 (0.9) 4.5 (1.0) 3.7 (1.0) 4.8 (1.0) 4.4 (1.0)
Non-count-list 5.7 (1.2) 2.4 (0.8) 3.3 (0.5) 8.6 (1.5) 2.0 (0.9) 5.8 (0.8)
Mixed (1) 7.7 (1.4) 9.9 (1.7) 5.5 (1.9) 9.5 (1.2) 10.8 (1.9) 8.5 (2.1)
Mixed (2, 3) 5.7 (1.2) 1.9 (0.7) 13.9 (2.1) 8.2 (1.5) 1.6 (1.0) 13.4 (2.2)

Note. Table C2 gives all subcondition means and standard errors (the latter in parentheses) in terms of error rates (ERs, % incorrect).
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Table D1
Correlations Between Each Trial Type in the Ordinal Verification Task and the Mental Arithmetic Task (N = 59)

Ordinality Digits
Rule

condition Trial type Correlation (p-val)

Ordered 1-Digit Standard Count-list r = �.53 (p = 2E � 05)
Non-count-list r = �.45 (p = 3E � 04)

Incongruent Count-list r = �.55 (p = 7E � 06)
Non-count-list r = �.53 (p = 2E � 05)

Congruent Count-list r = �.47 (p = 2E � 04)
Non-count-list r = �.36 (p = .005)

2-Digit Standard Count-list r = �.48 (p = 1E � 04)
Non-count-list r = �.47 (p = 2E � 04)

Incongruent Count-list r = �.40 (p = .002)
Non-count-list r = �.50 (p = 6E � 05)

Congruent Count-list r = �.43 (p = 7E � 04)
Non-count-list r = �.40 (p = .002)

Mixed 1-Digit Standard Mixed (1) r = �.54 (p = 1E � 05)
Mixed (2, 3) r = �.46 (p = 2E � 04)

Incongruent Mixed (1) r = �.53 (p = 2E � 05)
Mixed (2, 3) r = �.55 (p = 8E � 06)

Congruent Mixed (1) r = �.55 (p = 8E � 06)
Mixed (2, 3) r = �.39 (p = .002)

2-Digit Standard Mixed (1) r = �.44 (p = 4E � 04)
Mixed (2, 3) r = �.47 (p = 2E � 04)

Incongruent Mixed (1) r = �.50 (p = 6E � 05)
Mixed (2, 3) r = �.48 (p = 1E � 04)

Congruent Mixed (1) r = �.52 (p = 3E � 05)
Mixed (2, 3) r = �.48 (p = 1E � 04)

Note. Table D1 shows the correlation between performance on each trial-type of the ordinality verification task and the mental arithmetic task.
Combined Performance (CP) values were used for the former, meaning a lower value indicates better performance. Net correct in the allotted time (see
Lyons & Beilock, 2011, for details) was used to score the arithmetic task, meaning a higher value indicated a higher score. Hence, a negative correlation
(r-value) indicates better performance on the ordinality task was associated with better performance on the arithmetic task. Zero-order r-values (df = 57)
are given in the rightmost column, with associated p-values in parentheses.
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