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A B S T R A C T   

Ordinal processing plays a fundamental role in both the representation and manipulation of symbolic numbers. 
As such, it is important to understand how children come to develop a sense of ordinality in the first place. The 
current study examines the role of the count-list in the development of ordinal knowledge through the inves
tigation of two research questions: (1) Do K-1 children struggle to extend the notion of numerical order beyond 
the count-list, and if so (2) does this extension develop incrementally or manifest as a qualitative re-organization 
of how children recognize the ordinality of numerical sequences. Overall, we observed that although young 
children reliably identified adjacent ordered sequences (i.e., those that match the count-list; ‘2-3-4') as being in 
the correct ascending order, they performed significantly below chance on non-adjacent ordered trials (i.e., those 
that do not match the count-list but are in the correct order; ‘2-4-6’) from the beginning of kindergarten to the 
end of first grade. Further, both qualitative and quantitative analyses supported the conclusion that the ability to 
extend notions of ordinality beyond the count-list emerged as a conceptual shift in ordinal understanding rather 
than through incremental improvements. These findings are the first to suggest that the ability to extend notions 
of ordinality beyond the count-list to include non-adjacent numbers is non-trivial and reflects a significant 
developmental hurdle that most children must overcome in order to develop a mature sense of ordinality.   

1. Introduction 

Symbolic numbers (e.g., Arabic numerals) hold both cardinal and 
ordinal meaning. Cardinality refers to the underlying quantities that 
number symbols represent (how many?), while ordinality refers to the 
ordinal relations amongst number in a sequence (what position?). While 
efforts to understand how humans represent and process symbolic 
numbers have long focused on the role of cardinality, the role of ordi
nality has only recently made its way to the forefront of research in 
numerical cognition (for a review, see Lyons, Vogel, & Ansari, 2016). 
Overall, this growing body of literature characterizes ordinal processing 
as a fundamental numerical skill that plays an important role in both the 
representation and manipulation of symbolic numbers in both children 
and adults (e.g., Lyons & Beilock, 2011; Lyons, Price, Vaessen, Blomert, 
& Ansari, 2014; Sasanguie, Lyons, De Smedt, & Reynvoet, 2017; 
Sasanguie & Vos, 2018). Despite the upsurge in research and recognition 
of its relative importance, major gaps persist in terms of our under
standing of how ordinal understanding of number develops. What can 

perhaps be said most clearly is that, while children often have early 
exposure to ordered lists of numbers by learning to recite parts of the 
count-list (“one, two, three…”), children often do not understand the 
meanings of these numbers until much later (Wynn, 1992). Further, 
their understanding of ordinality is thought to lag behind that of car
dinality in general (Colomé & Noël, 2012; Knudsen, Fischer, Henning, & 
Aschersleben, 2015; Michie, 1984; Spaepen, Gunderson, Gibson, Goldin- 
Meadow, & Levine, 2018). However, while the count-list appears to play 
a central role in early understanding of numerical order (Lyons et al., 
2016) the precise nature of this influence is not known. Here, we 
examine how the count-list shapes – for better or worse – changes in how 
kindergarten and first-grade children process different kinds of numer
ical order. 

1.1. Ordinality as a fundamental numerical skill 

Understanding how numerical representations come to be over the 
course of children's development can inform millennia-old questions 
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about the nature of concepts like ‘number’, ‘quantity’ and ‘order’. A 
written number can represent cardinal value, ordinal relations between 
objects, or even ordinal relations between other numbers. Indeed, 
foundational work on the construction of coherent logico-mathematical 
systems do not always agree whether the central meaning of a number is 
its cardinal value (e.g., Bertrand Russel) or its ordinal position (e.g., 
Giuseppe Peano). Hence, investigating the constraints, limitations and 
advances children make in constructing basic numerical ideas – such as 
numerical order – has implications for our theoretical understanding of 
the basic cognitive foundations upon which more sophisticated mathe
matics are built (Lyons et al., 2016). Evidence supporting ordinality in 
particular as a fundamental numerical skill stems from a growing body 
of work linking ordinal processing to basic symbolic quantity process
ing, as well as to complex arithmetic performance. 

First, a growing body of literature has documented robust and 
consistent associations between ordinal processing and more complex 
math skills such as arithmetic (Attout & Majerus, 2015; Goffin & Ansari, 
2016; Lyons et al., 2014; Lyons & Ansari, 2015; Lyons & Beilock, 2011; 
Morsanyi, O'Mahony, & McCormack, 2017; Sasanguie et al., 2017; 
Sasanguie & Vos, 2018; Vogel et al., 2017). Specifically, the role of 
ordinality in arithmetic is thought to increase over developmental time 
(Lyons et al., 2014; Sasanguie & Vos, 2018). For example, in a cross- 
sectional sample of 1463 elementary school children, Lyons et al. 
(2014) observed that while magnitude comparison was the strongest 
predictor of arithmetic in first and second grade, the predictive contri
butions of ordinality increased across grade-level ultimately overtaking 
cardinality as the strongest predictor of arithmetic by the end of sixth 
grade. In line with this, Sasanguie and Vos (2018) observed that while 
cardinal processing mediated the relation between number ordering and 
arithmetic in first grade, ordinal processing mediated the relation be
tween magnitude comparison and arithmetic in second grade. Together, 
these findings point toward a developmental shift in the early years of 
formal schooling in which knowledge of symbol-symbol associations 
replaces knowledge of symbol-quantity associations as a crucial mech
anism in the development of sophisticated math skills. 

Going beyond correlations, Merkley (2015) trained two groups of 6- 
year old children to use a set of abstract symbols in a numerical context. 
The first group was provided with only cardinal information when 
learning the symbols, whereas the second group was provided with both 
cardinal and ordinal information. Merkley observed that children 
learned to use the newly-acquired symbols in a numerical context 
(determine which of two is larger) only if they were provided with both 
ordinal and cardinal information during the training. Those who were 
provided with only cardinal information during the training were at 
chance on the comparison task. Similar findings have been observed in 
adults (Lyons & Beilock, 2009; Merkley, Shimi, & Scerif, 2016). Overall, 
these findings suggest that understanding the ordinal relations between 
numbers may play a crucial role in tapping the full potential of what a 
system of abstract symbolic numbers can do. 

More broadly, it is useful to point out that number symbols are not 
natural objects. As such, they can help us think beyond the constraints of 
our immediate perceptions, but they therefore pose a major set of con
ceptual challenges. For instance, there is evidence suggesting that 
acquiring the ability to understand number symbols may alter how one 
processes (nonsymbolic) perceptual magnitudes (e.g., Lyons, Bugden, 
Zheng, De Jesus, & Ansari, 2018; Piazza, Pica, Izard, Spelke, & Dehaene, 
2013), and this effect may be strongest for larger magnitudes where the 
parallels between concrete objects and abstract quantities begin to break 
down (Hutchison, Ansari, Zheng, Jesus, & Lyons, 2020). Successfully 
learning to disentangle number symbols from concrete perceptions can 
allow us to understand not only that 1,000,001 is greater than 1,000,000 
without ever having directly perceived either magnitude, but also that 
the difference between those two quantities is exactly the same as that 
between far more quotidian quantities like 1 and 2 (Núñez, 2017). Un
derstanding numerical order is key to the insight noted above. Indeed, a 
fundamental aspect of ordinality is that it allows one to move beyond the 

count-list to form a rich network of associations amongst non-adjacent 
series of numbers as well. Recent work, however, suggests that 
extending one's notion of order beyond the count-list may not be trivial – 
a topic we turn to in the next section. 

1.2. The role of the count-list in the development of ordinality 

Young children gain practice ordering symbolic numbers (in the 
form of spoken words) well before developing an understanding of what 
those symbols mean. Specifically, young children are first introduced to 
an ordered sequence of numbers when learning to count. Most young 
children are able to recite the count-list in the correct order by the age of 
2 or 3, before they have acquired the meaning of each number word 
(Wynn, 1992). While the ability to recite the count-list early on does not 
reflect a deep understanding of the ordinal associations amongst 
numbers, it suggests that from a young age, children are committing the 
count-list to memory. It thus seems reasonable to hypothesize that the 
count-list plays a key role in shaping later understanding of numerical 
order (Lyons et al., 2016). 

Recent work by Gilmore and Batchelor (2021) investigated whether 
verbal counting skills could explain the robust relation between nu
merical ordering tasks and more complex math tasks such as mental 
arithmetic. Contrary to what Lyons and Ansari (2015) observed, Gil
more and Batchelor found that it did. An important difference between 
the two studies is that Lyons and Ansari measured very simple rote 
counting up to 9, whereas Gilmore and Batchelor measured more 
complex counting, such as ‘counting-on’ and ‘counting-down’ from a 
higher number (e.g., 25). Together, these results suggest that complex 
sequential understanding may be especially important in the develop
ment of the numerical foundations of children's mathematical under
standing. It remains unclear, however, just how straightforward 
extending notions of numerical order beyond the standard integer 
count-list may be. 

In particular, it is unclear whether children's extensive experience 
with the count-list facilitates or perhaps even hinders their ability to 
expand their notion of numerical order beyond this oft-recited list. Both 
adults and children are slower and less accurate when identifying non- 
adjacent, ordered sequences of numbers (e.g., 2–4-6) as ‘in-order’ 
compared to sequences like 3–4-5 (Franklin & Jonides, 2009; Gilmore & 
Batchelor, 2021; Lyons & Ansari, 2015; Lyons & Beilock, 2013; Turconi, 
Campbell, & Seron, 2006). One simple explanation for this phenomenon 
(commonly referred to as the reverse distance effect, RDE) is that 
repeated practice with the count-list facilitates processing of count-list 
sequences. However, Gattas, Bugden, and Lyons (2021) directly tested 
this assumption and found it lacking. It is less that processing sequences 
like 3–4-5 is facilitated, and more that processing sequences like 2–4-6 is 
impeded. When participants were forced to classify sequences like 3–4-5 
as ‘not-in-order’, performance was largely unaffected. However, when 
participants were forced to classify sequences like 2–4-6 as ‘not-in-order’ 
their performance substantially improved. If participants have a strong 
bias to ‘see’ count-list sequences as in-order, then forcing them to 
indicate the opposite should be highly challenging; but it was not. 
Conversely, if participants have a strong bias to ‘see’ non-count-list se
quences as ‘not-in-order’ (even when they actually are), then permitting 
them to indicate as much should be relatively easy – which was exactly 
what Gattas and colleagues found. Further, the authors found that this 
latter phenomenon largely explained the RDE in ordinal verification 
tasks. Note that this work was conducted with highly numerate adults 
(university undergraduates), so it would appear that the legacy of the 
count-list in numerical order processing may be less to facilitate notions 
of what is in order and more to create a lasting set of biases about what is 
not in order. Gattas et al. speculated that their observations were ves
tiges of an earlier developmental struggle to extend notions of numerical 
order beyond the count-list, but they were of course limited to specu
lation due to their adult sample. 

Interestingly, in line with the results discussed above, Gilmore and 
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Batchelor (2021) reported a bimodal distribution in the extent to which 
children in their study (ages 6.0–8.9 yrs) appeared to understand that 
non-count-list sequences (e.g., 2–4-6) should be classified as ‘in-order’. 
Roughly a third (41 of 62) of the children in their sample performed at or 
below chance (50%) when classifying distance-2 (e.g., 2–4-6) or 
distance-3 (e.g., 1–4-7) trials as ‘in-order’. Indeed, about a quarter of the 
sample (15 children) responded exclusively (0% accuracy) that such 
trials were ‘not-in-order’. This set of results potentially lends some 
credence to the speculation noted above by Gattas et al. (2021). How
ever, it is important to note several limitations. First, Gilmore and 
Batchelor's sample was relatively small (N = 62), comprised a relatively 
wide range of ages (the youngest of which was 6 years) and it was cross- 
sectional. This is not meant as a criticism of the Gilmore and Batchelor 
study as a whole, as these shortcomings do not speak to the central 
conclusions of their paper. Rather, if, in the current context, one wished 
to probe more deeply when and how children learn to extend their no
tions of numerical order beyond the integer count-list, then one might 
do well to investigate a larger sample of children starting at a younger 
age and following them across multiple time-points. In particular, it 
would be useful to understand whether it is the majority of children, or 
only a small subset, who struggle to extend the notion of numerical order 
beyond the count-list at the beginning of formal schooling (start of 
kindergarten). Further, it would be helpful to know roughly when this 
extended understanding of numerical order begins to emerge, and 
whether the transition is gradual or a reflection of a qualitative shift in 
children's thinking. Finally, knowing the answer to the above may 
permit a preliminary investigation into the factors that may help chil
dren learn to go beyond the count-list. 

1.3. Current study 

Overall, ordinal processing is fundamental to both the representation 
and manipulation of symbolic quantities. As such, it is important to 
understand how children come to develop a sense of ordinality in the 
first place. The current study longitudinally examined whether the 
count-list influences how children at the outset of formal education 
(kindergarten and 1st-grade; ages 5–6 years) recognize different kinds of 
numerical order (sequences that do and do not match the count-list). We 
chose this age range for several reasons. First, by kindergarten, the 
majority of children can recognize written number symbols, recite the 
count-list, and demonstrate a complete understanding of cardinality (e. 
g., Colomé & Noël, 2012; Jordan, Kaplan, Oláh, & Locuniak, 2006; 
Wynn, 1992). As such, we could reasonably assess ordinal recognition 
using a version of the standard ordinality verification task popular 
elsewhere in the literature. This in turn allowed us to test for the exis
tence of the RDE in children younger than 1st-grade. Finally, as they are 
encountering formal math schooling perhaps for the first time, we 
anticipated this age range might be apt to show changes in children's 
understanding of numerical order, especially with respect to extending 
one's sense of order beyond the count-list. Hence, we investigated (1) 
whether K-1 children struggle to extend the notion of numerical order 
beyond the count-list, and (2) whether this extension develops incre
mentally or manifests as a qualitative reorganization of how children 
recognize the ordinality of numerical sequences. Further, identifying 
when the above development begins to occur would allow for a post hoc 
assessment of which basic numerical capacities predict (and thus 
potentially contribute to) the expansion of children's ordinal 
understanding. 

To address whether K-1 children struggle to extend the notion of 
numerical order beyond the count-list, we used a standard ordinality 
recognition task and examined performance on trials that either did 
match the count-list (adjacent numbers, ‘3–4-5’) or did not (non-adja
cent numbers; ‘2–4-6’). Given prior research documenting an RDE 
during ordinal processing in both adults (Franklin & Jonides, 2009; 
Lyons & Ansari, 2015; Lyons & Beilock, 2013; Turconi et al., 2006) and 
children (Lyons & Ansari, 2015), we hypothesized that children would 

perform worse on non-adjacent compared to adjacent trials, starting as 
early as the beginning of kindergarten. If so, an important follow-up 
question is to begin to understand the nature and extent of under
performance on non-adjacent trials like ‘2–4-6’. Are kindergarteners 
only a little less proficient on these trials relative to adjacent trials (i.e., 
still well above chance performance), or do some, or perhaps even the 
majority of children, demonstrate a more fundamental misunder
standing of ordinality, as evidenced by performance at or below chance 
on these trials? The latter situation would suggest that a given child at 
this age indeed struggles to understand that the notion of numbers being 
‘in-order’ applies to sequences beyond the integer count-list. 

The second question we investigated was how children's under
standing of different types of numerical order potentially develops 
across three time-points: fall and spring of the kindergarten school-year 
into 1st-grade. In general, we expected to see overall performance on the 
order verification task improve with age, as has been previously shown 
in other studies (Lyons & Ansari, 2015). Crucially, however, we exam
ined whether the different trial-types – especially adjacent (e.g., ‘3–4-5’) 
and non-adjacent (e.g., ‘2–4-6’) trials show different developmental 
trajectories. Of particular interest here is the development of non- 
adjacent trials. Do age-related improvements on these trials occur 
incrementally, or more suddenly? If the latter, this might provide further 
indication that extending one's sense of order beyond the count-list 
comprises a qualitative – or perhaps even conceptual – shift in chil
dren's understanding of the greater range of what constitutes numerical 
order. Proposing a conceptual-level change in understanding is a rather 
strong claim, and so the current study probes this question in two 
different ways. 

First, we examined how the underlying distributions in performance 
changed over time. If developmental change in performance on non- 
adjacent (‘2–4-6’) trials reflects simple incremental change, we would 
expect to observe a unimodal distribution at all time-points with the 
peak (mode) gradually shifting in a positive direction (i.e., to the right in 
a standard histogram). Alternatively, individual children may experi
ence a kind of ‘eureka’ moment that involves a qualitative re- 
classification of non-adjacent trials from ‘not in-order’ to ‘in-order’. In 
this case, we should see a bimodal distribution, reflecting two sub- 
populations of children – those who ‘get’ that numerical order extends 
beyond the count-list, and those that don't. Crucially, this latter hy
pothesis applies only to non-adjacent trials, and not to the other trial- 
types because the ‘eureka’ moment described above should not alter 
how the other types of trials are classified in the ordinal verification task. 

A second, perhaps more formal method of testing whether changes in 
performance on non-adjacent trials undergo a gradual or abrupt shift is 
to investigate changes in the intercorrelations amongst the different trial 
types over time. In total, the ordinal verification task comprises four 
trial-types: in-order adjacent (e.g., ‘3–4-5’), in-order non-adjacent (e.g., 
‘2–4-6’), mixed (or not-in-order) adjacent (e.g., ‘3–5-4’), and mixed non- 
adjacent (e.g., ‘2–6-4’). One can examine the correlations between trial- 
types, and how these inter-correlations do or do not change over 
development. In the case of a major change in how children conceptu
alize one (and only one) of the trial-types amongst a large percentage of 
the sample, one would expect a dramatic change in how performance on 
that trial-type relates to performance on the other trial-types. In 
particular, if children abruptly switch from answering ‘no, not in order’ 
to ‘yes, in order’ for non-adjacent trials like ‘2–4-6’ (but no such switch 
occurs for the other three trial types), then one should see a large change 
in the correlations between performance1 on ‘2–4-6’ trials and the other 
three trial-types. Importantly, this change in correlations should occur 
only for the subset of children who indeed made the above switch, and 
only across measurement time-points that straddle when that switch 
occurred. In conjunction with the more qualitative unimodal/bimodal 

1 Where performance is indicated by accuracy, and the criterion for an ac
curate response remains unchanged – as is the case in the current study. 
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test described above, this correlational approach can help unpack what 
may be happening within each of those sub-distributions of children. 

Overall, to our knowledge, the current study is the first to examine in 
detail whether and how the count-list influences changes in how young 
children recognize different kinds of numerical order (namely, se
quences that do and do not match the count-list). First, we investigated 
whether children in the early years of formal schooling struggle with 
extending notions of ordinality beyond the count-list (Question 1). 
Specifically, we tested whether children perform above chance on nu
merical order judgments that are in fact numerically in order, but that do 
not match the count-list (e.g., 2–4-6). Second, we investigated whether 
the ability to do so develops incrementally or as the product of a more 
abrupt qualitative shift (Question 2). This we did in two ways, (2a) by 
examining changes in performance distributions, and (2b) by examining 
changes in the interrelations between different types of ordinality 
judgments. 

2. Methods 

It is important to note that the data presented here come from a large, 
longitudinal data set, a portion of which has been described and re
ported elsewhere (Hutchison et al., 2020; Lyons et al., 2018). However, 
the current study addresses a unique set of theoretical questions and 
analyzes the data in a manner distinct from those reported previously. 

2.1. Participants 

Data were collected at three time points (fall senior kindergarten,2 

spring senior kindergarten, spring first grade) from 424 children across 
35 schools within the Toronto District School Board (TDSB). Of these 
424 students, 40 were removed due to missing data in one or more 
conditions of interest for at least one of the three time points. The final 
analysis sample consisted of 384 children (169 female; 34 not born in 
Canada). Mean age at the first time point (fall of the senior kindergarten 
year) was 5.18 years (range: 4.67–5.77; SD: 0.29). Socio-economic sta
tus (SES) was not available at the child level, although, it could be 
estimated for each school.3 Schools were categorized as 0 = Low-SES 
(23.44%), 1 = Medium-Low-SES (31.25%), 2 = Medium-High-SES 
(33.33%), and 3 = High-SES (11.98%). 

2.2. Procedure 

2.2.1. Research collaborations 
The data reported here are part of a joint research project between 

the TDSB and the University of Western Ontario (UWO), which was 
approved by the TDSB's External Research Review (ERRC). All data 
collection was conducted in collaboration with teachers, early childhood 
educators (ECEs) and administrators in TDSB schools. The Board 
authorized TDSB's Research and Development Department to collect 
assessment data and personal information for the purposes of the Board's 
educational planning. Parents/guardians of participating students were 
informed that classroom educators would be collecting the assessment 

data and that confidential student-level data would be kept within the 
TDSB's Research and Development Department. The TDSB's Research 
and Development Department was authorized to share depersonalized 
data (stripped of any school or student identifiers) with related research 
partners for this study. Assessment materials were approved by the 
University of Western Ontario's Non-Medical Research Ethics Board. 

2.2.2. Data collection 
Data were collected by the teachers and ECEs of the classrooms in 

which the testing took place. Teachers and ECEs were trained on 
administering the Numeracy Screener during an in-service work day. 
Administration of the Numeracy Screener was conducted during 15–20 
min one-on-one testing sessions with the teacher/ECE and the student in 
a separate, quiet area at three time points: fall of senior kindergarten 
(2014), spring of senior kindergarten (2015), spring of first grade 
(2016). The average interval between the first two assessments was 
191.73 days (SD = 14.25). The average interval between the second and 
third assessment was 382.04 days (SD = 10.16). 

In each testing session, the teacher/ECE went over a predefined set of 
instructions with the student. Task-specific instructions and general 
guidelines were printed in the booklet on the page before the start of 
each task (see Appendix A). Before each task, the teacher/ECE went 
through several example items with the child to ensure that they un
derstood the task (see below for specific instructions). After going over 
the instructions and practice items, the teacher/ECE started the timer, 
and the child began the task. Note that teachers/ECEs completed 
intensive in-service training to ensure they were aware of how to 
administer the screener, as well as the importance of adhering to all 
instructions, procedures and guidelines to help ensure data integrity. 

2.2.3. Numeracy screener 
The Numeracy Screener booklets were based on a design originally 

developed by Nosworthy, Bugden, Archibald, Evans, and Ansari (2013). 
The booklets contain six basic numerical tasks, although only one 
(number ordering) is of relevance for the current study. 

2.2.4. Number ordering task 
Verbatim instructions were as follows. “In this task, your job is to 

decide whether the three numbers are in the correct order (from left to 
right). If the numbers are in order, draw a line through the [check mark]. 
If the numbers are not in order, draw a line through the [X mark]. Let's 
practice the example problems here. [The child then completed 4 
practice items – see below for additional details.] There will be problems 
on the backs of the pages as well. Make sure you don't skip any problems. 
You should try to complete as many problems as you can. You have 2 
minutes. Work as fast as you can without making too many mistakes. If 
you do make a mistake, draw an X through the mistake and put a new 
line through the right answer.” 

Children completed 4 practice items. Two items were ‘correct’, 
meaning children should mark the ✓ mark (1–2–3, 5–7–9), and two were 
‘incorrect’, meaning children should mark the mark (1–3–2, 6–4–8). 
For this task, experimenters were also instructed that it was especially 
important to work through all example problems, providing feedback as 
needed to ensure that students understood what it meant for numbers to 
be in the ‘correct’ order: 

“During practice items, point out and explain any mistakes. Start 
with the top-left item and work across then down (the student should 
do this on the test items as well). 
“For this task, it is especially important to work through the example 
problems to ensure that students understand what it means for 
numbers to ‘be in order’. The left two examples are in order; the right 
two examples are not.” 

A copy of the complete script and guidelines experimenters followed 
can be found in Appendix A. Note that in giving feedback on the practice 

2 In many Canadian provinces, kindergarten is split into ‘Junior’ and ‘Senior’ 
Kindergarten. Junior Kindergarten is similar to what is sometimes referred to as 
‘preschool’ elsewhere, as it is often relatively informal in overall structure and 
available to children who are 4 years old. Senior Kindergarten is more similar to 
what is referred to as kindergarten elsewhere. Senior Kindergarten tends to be 
more formally structured and involves the instruction of basic formal concepts 
in mathematics and other areas. 

3 School SES was estimated from median family income, percentage of fam
ilies below the Low-Income Measure, percentage of families on social assis
tance, percentage of parents without a high school diploma, percentage of 
parents with at least one university degree, and percentage of single-parent 
families. 
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items, experimenters were permitted to refer to numerical concepts such 
as ‘increasing’, ‘going up’ or ‘getting bigger’. Importantly, experi
menters were instructed not to provide a detailed explanation of what 
constitutes numerical order, or to provide specific strategies such as 
skip-counting techniques. This is because our aim was to investigate 
whether children could recognize different forms of numerical order, 
not to teach them how to do so (i.e., this was an observational, not an 
intervention study). Each of the above points was emphasized during the 
in-service training attended by all experimenters, and was subsequently 
re-emphasized throughout the process by the cooperating school board. 

The main number ordering task was made up of 48 items, with 12 
items per page. Each item consisted of three Arabic numerals (1–9) 
presented side-by-side in a rectangular grid (see Fig. 1). The child was 
asked to indicate whether the three numbers were in the correct order by 
either crossing through the ✓ mark (correct response for in-order trials) 
or the mark (correct response for mixed-order trials), which were 
presented below the number series. Of the 48 items, 14 consisted of in- 
order adjacent sequences (numbers that were separated by a numerical 
distance of 1; abbreviated as OA; see Fig. 1a), 10 consisted of in-order 
non-adjacent sequences (numbers that were separated by a numerical 
distance of 2; ONA; Fig. 1b), 14 consisted of mixed-order adjacent se
quences (abbreviated as MA; Fig. 1c) and 10 consisted of mixed-order 
non-adjacent sequences (abbreviated as MNA; Fig. 1d). The full trial 
list can be found in Appendix B. Participants completed as many items as 
possible within 2 min. 

Importantly, trial order was balanced such that, regardless of how far 
children progressed, they completed a similar proportion of the four trial 
types (OA, ONA, MA and MNA). Trial order was also balanced in terms 
of average numerical size (see Appendix B). 

2.2.5. Task scoring 
Raw scores were calculated as the total number of correct responses 

within the two-minute time limit. However, because children inevitably 
completed different numbers of trials within the two-minute time-frame, 
it is important to correct for guessing strategies. For instance, the 
average number of trials increased with age: T1: 21.2 trials attempted, 
T2: 22.0 trials completed, T3: 27.0 trials attempted. Hence, even if all 
children were randomly guessing at all time-points, one would expect to 
see raw scores increase (from 10.6 to 11.0 to 13.5). In addition, the 
analyses addressing Question 1 hinge critically on comparing perfor
mance against what would be predicted by chance (or random 
guessing). 

Therefore, scores were corrected for guessing (a child who randomly 
guessed on all 48 items would have received a score of 24) in a manner 
agnostic to the number of completed trials (provided this was greater 
than 0). We did so via the formula A = C – [I/(P–1)], where A is the 
adjusted score, C is the number correct, I is the number incorrect, and P 
is the number of response options (Rowley & Traub, 1977). Using this 
adjustment, random guessing yields an average adjusted score of 0, 
regardless of the number of trials completed. For example, on a 4-item 
multiple-choice exam (where each choice is equally probable), those 
who randomly guessed on 20 items would, on average, receive a raw 
score (C in the equation above) of 5. Therefore, those who used a 
guessing strategy in this example would receive an adjusted score (A) of: 
5 – [15/(4–1)] = 0. In the current study, the task items only had two 
alternatives with equal probability of being correct so the equation for 
the adjusted score is essentially the number of correct responses minus 
the number of incorrect responses (A = C – I). 

An additional note is that this approach implicitly controls for indi
vidual variability in speed-accuracy trade-offs. This is because the total 
amount of time-on-task (2 min) was fixed across participants, and so the 
number of trials completed is an implicit measure of average response- 
time. In sum, adjusted scores account for different numbers of trials 
completed and account for speed-accuracy trade-offs, making this 
approach desirable on a number of fronts. Hence, adjusted scores were 
used in all analyses. Adjusted scores were calculated separately for the 
four conditions (OA, ONA, MA, MNA). 

2.3. Task descriptions for post-hoc analyses 

Three tasks were used as additional predictors in post hoc analyses: 
numeral comparison (NC), dot comparison (DC) and mixed-format 
comparison (MC). All three tasks were collected at time-point 2 (T2) 
at the same time that the ordinal verification task was collected. Each of 
the three tasks was presented with a 2-min time-limit in the same 
manner as the ordinal verification task. Each comparison task comprised 
72 total items, with 12 items per page. Prior to starting the timer, the 
experimenter provided instructions and worked through four example 
trials. Brief descriptions of each task are provided below. Note that these 
data overlap with data used in Lyons et al. (2018) and Hutchison et al. 
(2020), though the specific analyses conducted and hypotheses tested 
here are distinct from those publications. Scoring for these tasks, 
including use of adjusted scores, was computed in the same manner as 
the ordinal verification task (described in the previous section). 

Fig. 1. shows examples of all trial types for the ordering task.  
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2.3.1. Numeral comparison (NC) 
Children were told, “In this task, your job is to decide which of the 

two numbers is bigger. Draw a line through the box with the number 
that means the most things.” Numerals ranged from 1 to 9 with absolute 
numerical distances |n1 – n2| of 1 to 3, and ratios (min/max) from 0.250 
to 0.889. Specifically, all 15 combinations of 1–9 with distances of 1 or 2 
were included, along with 3 combinations with distance 3 ({1,4}, {3,6}, 
{6,9}). This yielded 18 possible combinations. Of these 18, 9 were 
permuted such that the larger number was on the left, and the other 9 
were permuted such that the larger number was on the right. The 9 trials 
were chosen such that the larger side was in no way related to numerical 
size, distance or ratio. The next 18 trials were arranged in the opposite 
manner. The last 36 trials were determined in the same manner. Trial 
order was then pseudo-randomized within each set of 18 trials such that, 
for any nth item in the sequence, average numerical ratio, size and dis
tance were equated across comparison tasks (numeral, dot, mixed). This 
final step ensured that, if, for instance, a given child completed exactly 
10 trials on each of the three comparisons tasks, the ratios (or sizes or 
distances) encountered on each task would not have differed signifi
cantly across tasks (all ps > 0.20). In other words, comparing perfor
mance across tasks was not confounded with these numerical factors. 

2.3.2. Dot comparison (DC) 
Children were told, “In this task, your job is to decide which of two 

boxes contains more dots. Draw a line through the box that has the most 
dots in it.” Children were also instructed, “Don't try to count the dots. 
Instead, just look at the dots and try your best to guess which side has 
more dots in it.” Numerosities and trial order were determined in the 
same manner as the numeral comparison task (described above). In 
addition, two versions of a given permutation were created. In one 
version, dot area was positively correlated with numerosity, and overall 
contour length was negatively correlated with numerosity; in the other 
version, the opposite was true. On a given trial, the two parameters were 
thus in opposition; between trials, relying on any single parameter 
would have led to chance performance (Gebuis & Reynvoet, 2012). 
Parameter version order was further pseudo-randomized such that it 
was not informative of the correct answer within a given segment of 
trials. 

2.3.3. Mixed-format comparison (MC) 
Children were told, “In this task, your job is to decide whether a 

number or a group of dots means more things. If the number means more 
things, draw a line through the number. If the dots mean more than the 
number, then draw a line through the dots.” As with dot comparisons, 
children were also instructed, “Don't try to count the dots. Instead, just 
look at the dots and try your best to guess which side means more.” 
Numerosities and trial order were determined in the same manner as the 
numeral comparison task (described above). In addition, which side 
contained the numeral and which the dots was pseudo-randomized such 
that it was not informative of the correct answer within a given segment 
of trials. 

2.4. Data availability 

Data are freely available for download at [Open Science Framework 
link to be provided should manuscript be accepted for publication]. 

3. Results 

3.1. Question 1: do K-1 children struggle to extend notions of ordinality 
beyond the count-list? 

Our first research question asked whether K-1 children struggle to 
extend the notion of ordinality beyond the count-list. To do so, we 
examined trial-based performance on a standard ordering task with 
ordered trials that did match the count-list (e.g., OA, ‘3–4-5’) and 

ordered trials that did not (e.g., ONA, ‘2–4-6) as the primary trial-types 
of interest. Mean performance for each condition at each time-point is 
summarized in Fig. 2. Across all three time-points (T1, darkest bars in 
Fig. 2), children performed above chance (adjusted scores >0) on three 
out of the four conditions (OA, MA, MNA) [all ps < 0.001, all ds > 0.66]. 
Comparatively, children performed significantly below chance in the 
ONA condition across all three time-points (adjusted scores <0; blue 
bars in Fig. 2 [T1: t(383) = − 17.02. p < .001, d = − 0.87; T2: t(383) =
− 14.07. p < .001, d = − 0.72; T3: t(383) = − 3.93. p < .001, d = − 0.20]. 

Thus, children on average reliably classified in-order trials that did 
not match the count-list as ‘not in-order’. Note that this did not extend to 
adjacent trials, as children reliably identified OA trials (in-order trials 
that do match the count-list) as ‘in-order’ across all three time-points. 
Moreover, the fact that children performed above chance on average 
at all ages in three of the four conditions (OA, MA, MNA) indicates 
children understood and could complete the central demands of the task; 
children's difficulties were thus largely limited to the ONA trials. 

3.2. Question 2: does the ability to extend notions of ordinality beyond the 
count-list develop incrementally or qualitatively? 

Our second research question investigated how children's under
standing of order develops across three time-points: fall of kindergarten, 
spring of kindergarten, and spring of first grade. Specifically, we were 
interested in whether the different trial-types, especially in-order adja
cent (e.g., OA, ‘3–4-5’) and non-adjacent (e.g., ONA, ‘2–4-6’) trials, 
show different developmental trajectories. 

Performance significantly improved from each time-point to the next 
for all three conditions [all ps < 0.001, all ds > 0.20]. In contrast, mean 
performance in the ONA condition did not change at all from the 
beginning to the end of kindergarten [from T1 to T2: t(383) = 0.08, p =
.936, d = 0.004, remaining below chance at T2 [t(383) = − 14.07, p <
.001, d = 0.72]. Performance did, however, increase on ONA trials from 
T2 to T3 [t(383) = 5.05, p < .001, d = 0.26]. Notably, despite the sig
nificant increase, mean performance in the ONA condition remained 
significantly below chance by the end of 1st grade [T3: t(383) = − 3.93, 
p < .001, d = 0.20]. Thus, while performance improved, children still 
tended to classify all in-order non-adjacent trials as ‘not in order’, even 
by the end of 1st grade. 

While average performance on ONA trials remained below chance by 
the end of first grade, it did improve significantly from T2 to T3 (Fig. 2, 
medium to light blue bars). This improvement could either be indicative 
of incremental change in which the majority of children are beginning to 
slowly improve over time, or it could reflect a more abrupt change in 
which a subgroup of children shift from perceiving in-order non-adja
cent sequences as ‘not in-order’ to ‘in-order’. The latter would provide 
indication that extending one's sense of order beyond the count-list re
quires a conceptual shift in children's ordinal understanding. We 
attempted to differentiate between these two alternatives (incremental 
versus conceptual change) using both qualitative and quantitative 
methods. First, we examined change in the underlying performance 
distributions for each trial-type over time (qualitative). Second, we 
investigated change in the intercorrelations amongst the different trial 
types over time separately for those who perceive in-order non-adjacent 
(ONA) trials as ‘in-order’ by the end of first grade and those who do not 
(quantitative). 

3.2.1. Research Question 2a – changes in the underlying performance 
distributions 

If the improvement on ONA trials is indicative of incremental 
change, we would expect to observe a unimodal distribution of perfor
mance on this trial type at all three time points with the peak (mode) 
increasing (shifting to the right) from T2 to T3. Conversely, if the 
improvement is indicative of a qualitative re-classification of non- 
adjacent ordered trials from ‘not in-order’ to ‘in-order’, we should see 
a bimodal distribution, reflecting two sub-populations of children – 
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those who ‘get’ that numerical order extends beyond the count-list, and 
those who don't. Importantly, because we saw steady increases in the 
other three conditions (OA, MA and MNA) across all three time-points, 
we would expect to see a rightward-shifting unimodal distribution at all 
three time-points for these conditions. 

As can be seen in Fig. 3, the distribution of performance on ONA 
trials at the beginning and end of kindergarten (T1 and T2, respectively) 
was unimodal with a peak centered around an adjusted score of 
approximately − 5, indicating that most children in the sample fell below 
chance at this stage in development. However, by the end of first grade 
(T3), the distribution of performance on ONA trials became bimodal, 
with one peak centered over an adjusted score of approximately +5 and 
another centered over an adjusted score of approximately − 5. This 
bimodality was specific to ONA trials, as performance on the other three 
trial types (OA, MA and MNA) followed a unimodal distribution across 
all three time points. These data indicate that a subgroup of children 
shifted from perceiving in-order non-adjacent trials as ‘not in-order’ in 
kindergarten to ‘in-order’ by the end of first grade, while another sub
group remained committed to the idea that such trials do not count as 
being ‘in-order’ across all three time points. These findings are consis
tent with the hypothesis that improvement on ONA trials occurs as a 
qualitative re-classification of in-order adjacent trials from ‘not in-order’ 
to ‘in-order’ (i.e., conceptual shift in ordinal thinking), rather than 
through incremental improvements. 

To probe whether the bimodality observed above was a reflection of 
a subgroup of children improving on ONA trials specifically, rather than 
on the ordering task in general, we next divided the sample into those 
who performed above chance on ONA trials at the end of first grade (T3, 
N = 156), and those who continued to performance below chance on 
ONA trials at T3 (N = 228). We abbreviate these groups as T3+ and T3–, 
respectively. We then investigated between-group differences in mean 
performance across all trial-types. 

Fig. 4 summarizes mean performance broken down by subgroup 
(T3+ and T3–) for all conditions at all time-points. First, it is important 
to note that the T3– group performed above chance in the other three 
conditions (OA, MA, MNA) at all three time-points (all ps < 0.001, all ds 

> 0.74). This indicates that aberrant performance for the T3– group was 
specific to the ONA condition. This is reinforced by the fact that dif
ferences between the two groups in the other conditions were smaller 
and followed a less consistent pattern (all ds < 0.50), relative to dif
ferences in the ONA condition at T3 (d = 4.19).4 Indeed, at the critical 
3rd time-point (T3, at which group-membership was determined via the 
ONA condition), the T3– did not perform significantly worse than the 
T3+ group in any of the other three conditions. If anything, the T3– 
group showed slightly better performance on the two mixed conditions 
(MA MNA). In other words, it does not appear to be the case that the T3+
group suddenly improved on the ordering task as a whole. Instead, the 
T3+ group's marked improvement, relative to the T3– group, was spe
cific to the ONA condition, consistent with the notion that the T3+
children had learned to extend the notion of numerical order to sets of 
non-adjacent numbers (i.e. ordered sets that do not match the count- 
list). Finally, the T3+ group's improvement on ONA conditions was 
specific to the period between the 2nd and 3rd time-points, as they 
showed no advantage over their T3– counterparts on ONA trials at either 
T1 (t (383) = 1.33 p = .55, d = 0.06) or T2 (t (383) = − 1.27, p = .20, d =
0.13). Together, these results are consistent with the notion that a 
conceptual shift in numerical ordinal understanding occurred in a subset 
of children – those in the T3+ group – that impacted performance spe
cifically in the ONA condition and was limited to the time-frame be
tween the end of kindergarten and the end of 1st grade. 

3.2.2. Research Question 2b – changes in the interrelations amongst trial- 
types 

To complement the qualitative analyses above, we next took a 
quantitative approach to investigate whether the ability to extend no
tions of ordinality beyond the count-list develops as a result of a 

Fig. 2. shows mean performance on the ordering task, broken down by condition and time-point. Scores are adjusted so that a score of 0 indicates chance per
formance. Error bars reflect standard errors of the mean. T1 = beginning of kindergarten, T2 = end of kindergarten, T3 = end of 1st grade. 

4 We recognize that comparing groups on the very dimension by which they 
were divided is clearly double-dipping. We provide this effect-size here simply 
to contextualize the relatively smaller differences between the groups in the 
other three conditions. 
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conceptual shift in one's understanding of what it means for a series of 
numbers to be in-order. Specifically, we examined changes in the in
terrelations amongst trial-types over time, separately for those who 
recognized ONA trials as ‘in-order’ by the end of first grade (T3+) and 
for those who do not (T3–). If the improved performance for the T3+
group is a reflection of a qualitative re-classification of ONA trials from 
‘not in-order’ to ‘in-order’, we would expect performance on these trials 
to relate to performance on the other three trial types in a manner that is 
substantially different than in the group for which no such re- 
classification is thought to have occurred (T3–). That is, we expected 
to see ONA trials relate to the other three trial-types in a fundamentally 
different way for the T3+ relative to the T3– group. Importantly, this 
difference should emerge only between time-points 2 and 3, when the 
putative conceptual shift is thought to have arisen. 

Fig. 5 shows correlations between ONA performance and the other 
three trial types for each subgroup (ONA ~ OA in Fig. 5a, ONA ~ MA in 
Fig. 5b, and ONA ~ MNA in Fig. 5c). In Fig. 5a, the correlation between 

ONA and OA trials is moderate at T1 and near zero (and non-significant) 
at T2 for both groups. However, at T3 the correlation between ONA and 
OA trials is strongly positive [r (154) = 0.67] for the T3+ group and 
strongly negative [r (226) = − 0.50] for the T3– group. Indeed, 
comparing ONA ~ OA correlations between groups (using a Fisher z- 
test) showed no significant difference between groups at T1 [z = 0.92, p 
= .36, d = 0.12] or T2 [z = − 0.85, p = .39, d = 0.11], but there was a 
highly significant difference at T3 [z = 13.09, p < .001, d = 1.73]. These 
findings indicate a major departure between groups in terms of how 
their performance on ONA trials related to OA trials. 

An overall similar pattern was seen for the correlations between ONA 
and MA and ONA and MNA. The correlations were strongly negative for 
both groups across T1 and T2 and, for the most part, we did not observe 
any significant differences between groups at either time point (ps >
0.28, ds < 0.14). However, we did observe a slight between-group dif
ference in the correlation between ONA and MNA at T1 (z = 2.73, p <
.01, d = 0.36), in which the correlation was more strongly negative for 

Fig. 3. shows distributions of performance for each trial type across all three time points. The x-axis reflects adjusted scores, while the y-axis reflects sample density. 
Density distributions were estimated using an Epanechnikov kernel function. OA = in-order adjacent, ONA = in-order non-adjacent, MA = mixed-order adjacent, 
MNA = mixed-order non-adjacent. T1 = beginning of kindergarten, T2 = end of kindergarten, T3 = end of first grade. 
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the T3– group [r(226) = − 0.79] compared to the T3+ group [r(154) =
− 0.65). Notably, large differences did not emerge until T3 (ONA ~ MA: 
z = 9.49, p < .001, d = 1.26; ONA ~ MNA: z = 12.07, p < .001, d = 1.60). 

Overall, we observed that belonging to the group of children who 
reliably identified non-adjacent ordered trials as ‘in-order’ by the end of 
first grade, was associated with a significant shift in the interrelations 
between ONA trials and all other trial-types (shifting from near-zero or 
negative at T1 and T2, to strongly positive at T3). Crucially, this change 
was specific to the time-point after which this shift purportedly 
occurred. These findings suggest that those in the T3+ group experi
enced an abrupt qualitative change in how they process ONA trials. 
More broadly, these results support the hypothesis that recognizing 
numerical order in sequences other than the integer count-list is itself 
driven by a conceptual shift in numerical ordinal understanding rather 
than via the type of incremental change we observed for ordinal veri
fication of other types of sequences (OA, MA, MNA). 

3.3. Post-hoc analysis: predicting change in non-adjacent ordinal 
performance 

The results above demonstrated that while children at the outset of 
kindergarten can reliably classify ordinal sequences of numbers, this 
does not extend to ordered sequences that go beyond the count-list. The 
capacity to extend conceptions of numerical order began to emerge by 
the end of 1st grade, but only amongst a subset of children. Moreover, 
this capacity appeared to qualitatively reorganize how these children 
approached the ordinal verification task, as evidenced by changing in
terrelations between trial types. In sum, these results suggest that a 
deeper investigation into what factors might contribute to this change in 
children's ordinal understanding may be warranted. Hence in this sec
tion, we investigate whether (and which) basic numerical skills predict 
the change in ONA performance across the time-points that saw the 
greatest change therein – namely, T2 to T3. 

More specifically, we investigated the general and specific contri
butions of three number comparison tasks that are widely used else
where in the literature to measure three foundational aspects of 

Fig. 4. shows trial-based performance on the ordering task by subgroup. Scores are adjusted so that a score of 0 indicates chance performance. Error bars reflect 
standard errors. T1 = beginning of kindergarten, T2 = end of kindergarten, T3 = end of first grade. Mean performance for the above chance on ONA trials at T3 
subgroup (T3+) is reflected in the solid bars (N = 156), while mean performance for the below chance on ONA trials at T3 subgroup (T3–) is reflected in the striped 
bars (N = 228). ⋄Note that based on how the groups were defined, a difference here is necessarily expected. It is presented here not to be of interest in itself, but to 
provide a reference point for group-wise differences in the other conditions, especially ONA performance at time-points 1 and 2. 
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numerical processing: Dot Comparison (DC, nonsymbolic magnitude 
processing), Numeral Comparison (NC, symbolic magnitude process
ing), and Mixed-Format Comparison (MC, symbolic-nonsymbolic map
ping). We tested whether performance measured at T2 in each of these 
tasks predicted change in ONA trials between T2 and T3 (predicting 
ONAT3, controlling for ONAT2). In addition, we tested whether count-list 
ordinal processing (OA) predicted this change. Importantly, by relying 
on an individual differences approach, we can account for the fact that 
we expect some children (T3+ group) but not others (T3– group) to 
demonstrate improvement on ONA trials; it also allows us to account for 
variability in improvement within each group, especially in the T3+
group. 

From Fig. 6 (blue bars), we see that each of the numerical tasks 

predicted (positive) change in non-adjacent ordering performance. 
Thus, if a given child was generally showed stronger basic numerical 
skills at the end of kindergarten, they were more likely to improve in 
non-adjacent ordering performance by the end of first grade. However, 
the red bars in Fig. 6 indicate that only the numerical comparison task 
(NC) predicted unique growth in non-adjacent ordering performance. 
Hence, it appears that children's understanding of relative cardinal 
magnitude – especially in symbolic form – contributes to their ability to 
learn to extend notions of numerical order beyond the count-list.5 

4. Discussion 

Ordinal processing plays a fundamental role in both the represen
tation and manipulation of symbolic numbers (Lyons et al., 2016). As 
such, it is important to understand how children come to develop a sense 
of ordinality in the first place. While there is currently a relative dearth 
of research on how ordinal skills develop, it is reasonable to hypothesize 
that children's initial perceptions of ordinality are tied to the verbally 
rehearsed count-list. However, the extent and nature of the count-list's 
influence on ordinal development remains unknown. The current study 
examined the role of the count-list in the development of ordinal 
knowledge through the investigation of two research questions: (1) Do 
K-1 children struggle to extend the notion of numerical order beyond the 
count-list, and if so (2) does this extension develop incrementally or 
manifest as a qualitative re-organization of how children recognize the 
ordinality of numerical sequences. Overall, we observed that although 
young children reliably identified adjacent ordered sequences (i.e., 
those that match the count-list) as being in the correct ascending order, 
they performed significantly below chance on non-adjacent ordered 
trials (i.e., those that do not match the count-list but are in the correct 
order) from the beginning of kindergarten to the end of first grade. This 
finding suggests that young children's sense of what constitutes nu
merical order may be limited to sequences that match the count-list. 

Further, both qualitative and quantitative analyses supported the 
conclusion that the ability to extend notions of ordinality beyond the 
count-list emerged as a conceptual shift in ordinal understanding be
tween the end of kindergarten and the end of first grade, while perfor
mance on the other types of ordinal processing developed more 
incrementally. In sum, we found that the count-list indeed appears to 
have a profound influence on how children conceptualize numerical 
order. Specifically, the majority of children found the problem of 
extending their notion of numerical order beyond the count-list to be 
highly non-trivial. Further, this extension took place for about half of 
children sometime between the end of kindergarten and the end of first 
grade, and appeared to manifest as a qualitative, rather than an incre
mental, shift in their concept of numerical order. Finally, post hoc an
alyses revealed that cardinal processing of symbolic numbers may play a 
unique role in helping children merge concepts of cardinality and 
ordinality to expand their working understanding of what it means for 
numbers to be ‘in order’. 

4.1. Children struggle to extend their notion of ordinality beyond the 
count-list 

The finding that young children consistently identified trials that 
matched the count-list as ‘in-order’ but struggled with those that did not, 
is consistent with the well-documented reverse distance effect (RDE). 
Specifically, prior studies have documented that both adults (Franklin & 
Jonides, 2009; Lyons & Ansari, 2015; Lyons & Beilock, 2013; Turconi 
et al., 2006) and children in grades 1–6 (Lyons & Ansari, 2015) are 
slower and less accurate when identifying non-adjacent ordered se
quences compared to adjacent ordered sequences. The current study is 

Fig. 5. shows the correlations between performance in the ONA condition and 
performance in the OA (a), MA (b) and MNA (c) conditions at each of the three 
time points. T1 = beginning of kindergarten, T2 = end of kindergarten, T3 =
end of first grade. The darker line reflects the correlations for the above chance 
at T3 group (T3+) and the lighter line reflects the correlations for the below 
chance at T3 group (T3–). ** p < .01; *** p < .001. 

5 The overall pattern of results remained unchanged after adjusting for 
clustering within schools using cluster-robust standard errors. 

J.E. Hutchison et al.                                                                                                                                                                                                                            



Cognition 223 (2022) 105019

11

the first to suggest that the RDE obtains in children as early as the 
beginning of kindergarten. 

However, it is important to note that the extent of the RDE observed 
in the current study differs from that observed in prior studies with older 
samples. Specifically, although the RDE is typically marked by less 
efficient processing of non-adjacent ordered sequences compared to 
adjacent ordered sequences, performance amongst older samples tends 
to remain well-above chance for both types of sequences. As such, the 
RDE typically reflects a slight performance cost rather than a funda
mental misunderstanding of what it means for a series of numbers to be 
in-order. However, in the current study, the majority of kindergarten 
children (and about half of 1st graders) performed significantly below 
chance on non-adjacent ordered trials. This finding suggests that chil
dren at this age may not recognize non-adjacent ordered sequences as 
being in the correct order; in fact, they actively categorize them as not in 
order. The current study is thus the first to provide clear indication that 
in the early stages of formal schooling (K-1st grade), children have not 
yet extended their notion of ordinality beyond sequences that directly 
match the count-list (e.g., 3–4-5). 

Until recently, perhaps the most common explanation for the RDE in 
adults is that it is a by-product of familiarity with rehearsed sequences 
(such as the count-list). In other words, individuals are faster to recog
nize adjacent, compared to non-adjacent, sequences of numbers because 
they are more likely to come across such sequences in their daily lives 
resulting in more efficient retrieval from long-term memory (Bourassa, 
2014; LeFevre & Bisanz, 1986; Lyons & Beilock, 2013; Sella, Sasanguie, 
& Reynvoet, 2020). However, recent work by Gattas et al. (2021) 
demonstrated that the RDE is more a reflection of the fact that pro
cessing of non-adjacent sequences like 2–4-6 is impeded by the count-list 
more so than adjacent sequences like 3–4-5 are facilitated by the count- 
list. In particular, when participants were forced to classify sequences 
like 2–4-6 as ‘not-in-order’ their performance substantially improved, 
indicating an underlying inclination to view such stimuli as poor ex
amples of ordered sequences. Gattas and colleagues surmised this might 
be a vestige of an earlier developmental struggle to stretch conceptions 
of numerical order to include non-count-list sequences. The data here 
are a strong endorsement of that speculation. Furthermore, Gilmore and 
Batchelor (2021) showed that a subset of older children (roughly 6-9 
yrs) continue to perform at or below chance specifically in non-adjacent 
ordered trials. Together, these results converge to show that overcoming 
an early tendency to define numerical order as synonymous with the 
integer count-list is non-trivial, may take several years in some children, 
and continues to impact ordinal processing even in highly numerate 

adults. 

4.2. Going beyond the count-list 

The idea that ordered sets include numerical sequences beyond the 
count-list is a fundamental numerical concept that allows one to form a 
rich network of ordinal associations amongst non-adjacent numbers. As 
such, an important follow-up question is to begin to understand how the 
expansion of what constitutes the boundaries of numerical order de
velops. The findings from the current study suggest that the ability to 
correctly identify non-adjacent ordered sequences as being in the correct 
order does not develop incrementally, but rather as a qualitative reor
ganization of what constitutes numerical order. This conclusion is sup
ported by two main findings. For one, we observed that the underlying 
distribution of performance on non-adjacent ordered trials changed 
from unimodal (with a peak below the mean) to bimodal (with one peak 
below and another above the mean) between the end of kindergarten 
and first grade. If the development of ordinality occurred through in
cremental change, we would have observed a unimodal distribution of 
performance at all three time points with a rightward shifting peak – just 
as was the case for the other three trial types. However, the bimodal 
distribution at T3 suggests that only a subset of children (about half the 
sample) transitioned form initially rejecting, to later accepting, the idea 
that non-adjacent numbers can make up an ordered sequence, with their 
performance distribution for ONA trials centered above chance (above 
0 in Fig. 3) at T3. Meanwhile, the remaining children remained 
committed to the idea that non-adjacent ordered sequences do not count 
as being ‘in-order’, with their distribution centered below 0 at all time- 
points. Therefore, some children (the T3+ group) ‘made the leap’ to 
include ONA trials in their concept of numerical order, while some 
children (the T3– group) did not. That said, it is still possible that the 
T3+ group arrived at their expanded sense of order via an incremental 
process. To address this possibility, we examined whether the T3+
group processed ONA trials differently than their T3– counterparts prior 
to T3 (1st grade). 

First, Fig. 4 shows that the two groups did not differ in overall per
formance on ONA trials prior to the third time-point. Second, Fig. 5 
shows that belonging to the T3+ group was associated with a large shift 
in the interrelations between ONA trials and the other three trial-types 
between the end of kindergarten and the end of first grade. Specif
ically, the relation between ONA and all other trial types shifted from 
near-zero or negative to positive by the end of first grade. Crucially, this 
pattern of change was observed specifically for those in the T3+ group. 

Fig. 6. shows partial correlations predicting 
growth in non-adjacent ordering (ONA) 
performance from the end of kindergarten 
(T2) to the end of first grade (T3). Blue bars 
show simple growth effects (predicting 
ONAT3, controlling for ONAT2). Red bars 
show unique growth effects, controlling for 
the other three predictors as well. Abbrevi
ations: OA: adjacent ordering, NC: numeral 
comparison, DC: dot comparison, MC: 
mixed-format comparison. Dashed and solid 
black lines indicate p = .05 and p = .005 
significance levels, respectively.   
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For those in the T3– group, we observed that the relation between ONA 
and all other trial-types remained consistently negative or near-zero 
across all time-points. The abrupt shift in the interrelations between 
ONA trials and all other trial-types for the ONAT3+ group, but not the 
T3– group, provides evidence to suggest that the T3+ group underwent a 
qualitative shift in how they process ONA trials, while the T3– did not. 
Further, the fact that the interrelations between trial-types for the T3+
group looked more or less identical to their T3– counterparts prior to T3 
suggests the relevant developmental change occurred sometime during 
the 1st grade. Interestingly, the fact that only about half of the sample 
exhibited such a change even by the end of 1st grade indicates the 
presence of large individual differences in the timing thereof. 

Examining the between-group differences in the direction of in
terrelations amongst trial-types provides further insight into how these 
two groups differentially perceived ONA trials by the end of first grade. 
Recall that during the ordinality task children were asked to indicate 
whether a sequence was ‘in-order’ or not by responding either ‘yes’ or 
‘no’. If children perceive ONA trials as being in the correct numerical 
order, they should reliably respond ‘yes, in-order’ to these trials. On the 
other hand, if children perceive ONA trials as not being in the correct 
order, they should reliably respond ‘no, not in-order’ to these trials. 
Positive correlations between performance on ONA trials and all other 
trial-types suggest that children are processing in-order non-adjacent 
trials (ONA) similarly to in-order adjacent trials (OA; the correct 
response on these trials is ‘yes’) and in direct opposition to mixed (MA 
and MNA) trials (the correct response on these trials is ‘no’). On the 
other hand, negative correlations between performance on ONA trials 
and all other trial-types suggest that children are processing ONA trials 
similarly to mixed trials and in direct opposition to in-order adjacent 
trials. As such, the positive correlations between ONA trials and all other 
trial-types for the T3+ group suggest that children in this group 
correctly integrated in-order non-adjacent trials into a more inclusive 
idea of what constitutes numerical order by the end of first grade. 
Conversely, the consistent negative correlations between ONA trials and 
all other trial-types for the T3– group suggest that children in this group 
continued to incorrectly characterize in-order non-adjacent trials as 
fundamentally not in-order by the end of first grade. 

In sum, only a subgroup of children were able to characterize non- 
adjacent ordered sequences as being in the correct order even by the 
end of first grade (less than half here as compared to about a third of 
children in the older sample from Gilmore & Batchelor, 2021). 
Belonging to this group was associated with a qualitative shift in how 
such trials were processed relative to the other trial-types. We argue that 
these results, taken together, indicate that the extension of ordinality 
beyond the count-list constitutes a qualitative reorganization of one's 
sense of what numerical order means. 

4.3. Implications and future directions 

The findings from the current study provide the first evidence to 
suggest that over-reliance on the oft-recited count-list may in fact hinder 
the development of more advanced ordinal processing. In this way, the 
struggle to acknowledge that sequences such as 2–4-6 are ‘in in-order’ 
constitutes another example of how useful concepts at one stage of 
mathematical learning can prove an impediment to later mathematical 
learning. We see this as similar to whole-number bias in fraction 
learning (Mack, 1995; Van Hoof, Verschaffel, & Van Dooren, 2015), in 
which children often incorrectly select ¼ instead of ½ when asked to 
determine which is greater, due to overlearned familiarity with integers 
(i.e., 4 > 2). In the case of ordering, we propose the count-list may help 
early acquisition of basic ordinal concepts, but over-reliance on the 
count-list may lead to an unintended inflexibility – numerical order is 
the count-list – that needs to be partially unlearned. Just as fractions, 
counter-intuitive as they may be, are an invaluable aspect of mathe
matics, the notion that any set of numbers possesses an ordered per
mutation is an incredibly powerful mathematical idea. Still more 

mundanely, simply understanding that sequences can ‘skip’ numbers is a 
foundational idea in arithmetic and for developing a rich and flexible 
network of associations between numerical representations. 

To that end, while many studies have documented a strong relation 
between ordinal processing and arithmetic (Attout & Majerus, 2015; 
Goffin & Ansari, 2016; Lyons et al., 2014; Lyons & Ansari, 2015; Lyons & 
Beilock, 2011; Morsanyi et al., 2017; Sasanguie et al., 2017; Sasanguie & 
Vos, 2018; Vogel et al., 2017), no study has yet investigated whether the 
ability to extend ordinal principles to include non-adjacent numbers 
plays a unique role in the development of more complex math skills. 
However, evidence from dyscalculics suggests that this might be the case 
(Morsanyi, van Bers, O'Connor, & McCormack, 2018). Specifically, 
Morsanyi et al., compared the performance of children diagnosed with 
dyscalculia (i.e., a math learning disability characterized by difficulties 
with fluency in mathematical operations) and those without math dif
ficulties on a range of tasks including an ordinal verification task. The 
authors observed that ordering abilities were the best predictor of a 
dyscalculia diagnosis. This finding contributes to a growing body of 
literature indicating that deficits in ordinal processing contribute to 
impaired mathematical processing more broadly (Attout & Majerus, 
2015; Attout, Salmon, & Majerus, 2015; De Visscher, Szmalec, Van Der 
Linden, & Noël, 2015; Kaufmann, Vogel, Starke, Kremser, & Schocke, 
2009). Although not acknowledged by the authors, Morsanyi et al. 
observed that the disparity in ordinal processing between those with and 
without dyscalculia increased as the distance between the numbers in 
the sequence being judged increased (Fig. 1, Morsanyi et al., 2018). 
Specifically, they observed no differences in the ordering abilities of 
dyscalculics and non-dyscalculics when making judgments about adja
cent sequences of numbers (those that match the count-list) but that 
dyscalculics struggled in comparison to non-dyscalculics when judging 
the order of three non-adjacent numbers (those that do not match the 
count-list). Overall, these findings provide some evidence to suggest that 
the ability to extend one's sense of order beyond the count-list – or 
perhaps failure to do so – may have important consequences for future 
acquisition of math skills. Future work may thus prove fruitful if aimed 
at investigating the consequences of delays in learning this crucial aspect 
of numbers, as well as the most effective means of helping children make 
this important conceptual leap. 

Further, it is important to consider that the role of ordinal processing 
in more complex math achievement may be domain general, with both 
numeric and non-numeric ordering (e.g., alphabet, calendar system, 
daily events) skills playing an important role (Morsanyi et al., 2017; 
Morsanyi et al., 2018; Morsanyi, van Bers, O'Connor, & McCormack, 
2020; O'Connor, Morsanyi, & McCormack, 2018; Sasanguie et al., 2017; 
Vos, Sasanguie, Gevers, & Reynvoet, 2017). For example, O'Connor et al. 
(2018) measured young children's ordering skills using both a symbolic 
number ordering task, as well as a non-numeric daily events ordering 
task. The daily events task assessed children's temporal ordering 
knowledge by asking them to assess the correctness of the order of 
familiar daily events (e.g., waking up, getting dressed, going to school, 
eating lunch, eating dinner, going to bed). Overall, the authors observed 
that children's performance on both the numeric and non-numeric 
ordering tasks at the beginning of first grade significantly predicted 
more complex math achievement at later time points. Intriguingly, 
seminal research on the development of non-numeric ordering skills (i.e., 
the calendar system) suggests that children may also struggle with 
extending ideas of non-numerical order beyond oft-recited lists (e.g., the 
verbal month list; Friedman, 1986). 

In particular, Friedman observed that fourth graders were signifi
cantly faster and more accurate when judging the order of adjacent (e.g., 
February, March, April) compared to non-adjacent months (e.g., March, 
May, August). Many fourth graders displayed overt behaviors indicative 
of reliance on a verbal reciting strategy when asked to determine the 
order of non-adjacent months (e.g., lip movement, reciting aloud, 
rhythmic tapping). Friedman interpreted these findings to suggest that 
familiarity with the verbal month-list may lead to a restricted or 
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inflexible understanding of the temporal month order – similar to our 
suggestion here that familiarity with the integer count-list may lead to a 
restricted and inflexible understanding of numerical order. Notably, 
Friedman observed that the discrepancy in performance on the adjacent 
and non-adjacent month sequences decreased as children got older, 
which parallels a reduction in the reverse distance effect with age in 
numerical order processing (from grades 1–6; see Table 2 in Lyons and 
Ansari, 2015). Further, Friedman observed that children in tenth grade 
were much less likely to rely on overt reciting strategies when asked to 
judge the order of non-adjacent month sequences compared to fourth 
graders. Friedman therefore concluded that children eventually shift 
from relying on a verbal list system when making temporal order 
judgments to a spatially ordered representational system, and that it is 
this representational shift that eventually allows children to develop a 
more flexible and mature understanding of the calendar system. Current 
data do not allow us to infer that a switch to spatially-based processing is 
what led some children in the current dataset to extend their concept of 
numerical order beyond the count-list. However, we find the suggestion 
intriguing and perhaps a ready topic for future research. Overall, we 
concur with Friedman in that reliance on verbal lists appear to interfere 
with the development of ordinal knowledge – and this phenomenon may 
not be limited to numerical processing. Efforts to understand how dif
ficulties or delays in the development of a more flexible understanding 
of ordinality may interfere with later math achievement should there
fore consider the role of both numeric and non-numeric ordering skills 
(e.g., Morsanyi et al., 2018). 

Another factor to consider is that the non-adjacent ordered se
quences that children were exposed to in the current study were ‘regu
lar’ sequences, meaning that, although they did not directly match the 
count-list, there was an equal distance (in this case 2) between each 
number in the sequence (e.g., 2–4-6, 3–5-7). Through activities such as 
skip-counting (e.g., counting 2 s), school-age children may have more 
exposure, and therefore might be more familiar, with ‘regular’ non- 
adjacent ordered sequences, compared to ‘irregular’ non-adjacent or
dered sequences, or those that are not evenly spaced (e.g., 2–5-9; 3–6-8). 
Given that children in the current study struggled to recognize even 
‘regular’ non-adjacent ordered sequences (or those that they potentially 
have more exposure to) as being in the correct order, one could imagine 
that this difficulty may be even more pronounced, or last longer, for 
those that are ‘irregular’. It is possible that learning to extend notions of 
ordinality to include ‘regular’ non-adjacent ordered sequences first 
might serve as an intermediary bridge for eventually developing a more 
complete sense of ordinality that extends to include those that are 
‘irregular’ as well. We suggest that future work should include multiple 
types of non-adjacent ordered trials to investigate this idea. 

Finally, the findings from the current study may offer some practical 
recommendations for educators. While learning the count-list is an in
tegral part of early mathematics education, it is important for teachers to 
understand that the ability to extend notions of ordinality beyond this 
list poses a significant challenge to young learners and therefore likely 
requires explicit scaffolding. Complementing rote-counting activities 
with skip-counting activities is one way of emphasizing the non-adjacent 
relations amongst numbers. In fact, skip-counting is included in the 
Ontario Curriculum as a specific learning expectation in first grade 
(Ontario Education, 2020), but not kindergarten (Ontario Education, 
2016). The introduction of skip-counting in first grade might partially 
explain why we observed improved performance on non-adjacent or
dered trials by the end of first grade, but not across the kindergarten 
year. Emphasizing the non-adjacent relations amongst numbers earlier 
on the curriculum may help children develop a more complete sense of 
ordinality prior to the start of first grade, when children are also ex
pected to learn numerical operations such as addition and subtraction. 
Entering the first grade classroom with a deeper understanding of the 
ordinal relations amongst numbers may facilitate the acquisition of 
these more complex mathematical concepts (Attout & Majerus, 2015; 
Goffin & Ansari, 2016; Lyons et al., 2014; Lyons & Ansari, 2015; Lyons & 

Beilock, 2011; Morsanyi et al., 2017; Sasanguie et al., 2017; Sasanguie & 
Vos, 2018; Vogel et al., 2017). A related point is that Gilmore and 
Batchelor (2021) found complex counting skills explained the relation 
between ordinal verification performance and arithmetic performance, 
whereas Lyons and Ansari (2015) found that simple counting skills did 
not. That said, neither Gilmore and Batchelor nor Lyons and Ansari 
explicitly examined skip-counting. Hence, it remains the case that no 
study has yet investigated the causal influence of skip-counting on the 
ability to extend ordinal notions beyond the count-list, and what this 
might mean for other forms of math processing. This remains a poten
tially fruitful area for future research. 

4.4. Why some children go beyond the count-list and others do not 

Even if we allow that the introduction of skip-counting in first grade 
might explain why average performance on non-adjacent ordered trials 
increased between the end of kindergarten and the end of first grade, it 
does not explain why this only occurred for a subgroup of children. The 
post hoc analyses indicated that positive change in non-count-list 
ordinal processing was predicted by stronger basic numeracy skills 
overall. However, only symbolic number comparison predicted unique 
change, even controlling for performance on count-list trials. Hence, it 
seems that some influence outside of current notions of ordinality may 
be important to expanding those notions. To this end, Spaepen et al. 
(2018) observed that young children were only able to make ordinal 
judgments after they had acquired the cardinality principle (i.e., un
derstanding that the last number reached when counting items reflects 
the size of the whole set). Similarly, using a cross-sectional sample of 88 
children (ages 4–7), Knudsen et al. (2015) reported that young children 
demonstrated an understanding of ordinality only after they had learned 
to associate number symbols with their underlying qualities. Once 
children had acquired the meaning of number symbols, cardinal and 
ordinal understanding developed concurrently. Hence, one possible 
explanation is that early understanding of symbolic numbers combine 
with counting procedures to provide an initial platform for completing 
basic ordinality judgments. However, further development of symbolic 
cardinal understanding may continue to play a role in helping to expand 
conceptions of numerical order still further. 

It is also important to consider what role environmental factors 
might play in explaining why some children were quicker to make a 
conceptual shift in ordinal understanding than others. For one, it is 
possible that those who were able to identify non-adjacent ordered se
quences as being in the correct order by the end of first grade in the 
current sample had teachers who emphasized the non-adjacent relations 
amongst numbers (whether through skip-counting or other strategies) to 
a greater extent than those who did not. However, as mentioned above, 
more research is needed to understand the extent to which specific 
teaching practices (such as skip-counting) might support the ability to 
extend notions of ordinality to include non-adjacent relations amongst 
numbers. Further, it is possible that those who were able to make this 
conceptual shift in ordinal understanding were exposed to more 
numeracy activities at home and therefore had more opportunities to 
learn about the ordinal relations amongst numbers outside of the 
classroom. However, although prior research suggests that the home 
numeracy environment plays an influential role in the development of 
early numeracy skills in general (e.g., Anders et al., 2012; Elliott & 
Bachman, 2018; Susperreguy, Di Lonardo Burr, Xu, Douglas, & LeFevre, 
2020), more work is needed to understand its role in the development of 
ordinal understanding specifically. 

Finally, in addition to environmental factors, individual differences 
in non-numerical cognitive skills, such as inhibitory control (i.e., the 
ability to suppress a pre-potent response; Zelazo, Carlson, & Kesek, 
2008) may influence one's ability to extend ordinal principles beyond 
the count-list. For example, if young children's initial notions of ordi
nality are rooted in the count-list, then classifying non-adjacent ordered 
sequences that do not match the count-list as ‘not in-order’ likely 
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becomes a prepotent response that children must overcome in order to 
respond correctly on these trials. Those with greater inhibitory control 
should be better able to overcome this prepotent response and therefore 
may be more likely to belong to the group of children who are able to 
reliably identify non-adjacent ordered sequences as being in the correct 
order by the end of first grade. However, the role of inhibitory control in 
one's ability to make this conceptual shift in ordinal understanding has 
yet to be empirically investigated. Overall, efforts to understand how 
various environmental and cognitive factors contribute to one's ability 
to recognize non-adjacent ordered sequences as being in the correct 
numerical order can inform why some children appear to struggle with 
this more than others and may point toward specific strategies for pro
moting the acquisition of this relatively complex ordinal concept. 

4.5. Limitations 

While we suggest that the observed underperformance on non- 
adjacent ordered trials, relative to adjacent ordered trials, stems from 
a restricted representation of what it means for a sequence of numbers to 
be ‘in-order’, others may argue that this pattern of results could stem 
simply from a misunderstanding of the instructions. For example, it is 
possible that even if young children equate the term ‘in-order’ to mean 
the count-list, they may still have an understanding of ordinal direction 
for non-adjacent trials (i.e., they recognize that numerical sequences can 
go up or down whether the numbers are adjacent or non-adjacent in the 
count-list). In the current study, we only asked about ascending ordered 
sequences and therefore could not test this hypothesis. However, it is 
important to note that every effort was made to ensure that participating 
children did in-fact understand that the term ‘in-order’ could apply to 
both adjacent and non-adjacent sequences. Specifically, as mentioned in 
the Methods section, children completed practice trials that consisted of 
all trial-types (in-order adjacent, in-order non-adjacent, mixed-order 
adjacent, mixed-order non-adjacent) and were provided with feedback 
if they responded incorrectly. Therefore, if a child incorrectly labelled 
the in-order non-adjacent practice trial as ‘not in-order’, the experi
menter would have corrected them and explained that such trials do in- 
fact count as being ‘in-order’. Importantly, experimenters were 
instructed that for this task in particular, it is especially important to 
work through all example problems, providing feedback as needed, to 
ensure that students understand what it means for numbers to be in the 
correct order. These instructions were emphasized during both the in- 
service training day as well as in the task booklet (see Appendix A). It 
is therefore rather intriguing that despite these efforts to ensure that all 
children understood that both adjacent and non-adjacent sequences 
count as being in the correct order, most children continued to reliably 

classify non-adjacent order sequences as being ‘not in-order’ (for 
converging evidence in older children, see also Gilmore & Batchelor, 
2021). This suggests that young children may require more extensive 
scaffolding that goes beyond what was provided in the task instructions 
in-order to successfully update their representation of what it means for 
a series of numbers to be in the correct order. 

Finally, it is important to acknowledge that the ordinal verification 
task used in the current study is only one way of measuring numerical 
ordinal processing. Specifically, in the current study we operationalized 
ordinal processing as one's ability to identify whether three single-digit 
numbers were in the correct ascending order or not. While this task is 
commonly used throughout the literature (e.g., Goffin & Ansari, 2016; 
LeFevre & Bisanz, 1986; Lyons et al., 2014; Lyons & Ansari, 2015; Lyons 
& Beilock, 2013), other studies have operationalized ordinal processing 
using pairs of numbers instead of triplets (e.g., Turconi et al., 2006; 
Turconi, Jemel, Rossion, & Seron, 2004; Vogel et al., 2017) or by asking 
participants to arrange a set of numbers in the correct order rather than 
judging a pre-established sequence (e.g. Knudsen et al., 2015). Future 
studies should investigate whether the pattern of results observed in the 
current study holds when ordinality is probed in different ways. 

5. Conclusion 

Overall, the findings from the current study contribute to a small 
body of literature that has attempted to uncover the developmental 
trajectory of ordinal processing. Prior studies suggest that ordinality 
develops gradually and lags behind the development of cardinal un
derstanding (Colomé & Noël, 2012; Knudsen et al., 2015; Michie, 1984; 
Spaepen et al., 2018). However, no study has yet considered that 
different aspects of ordinality may display different developmental 
trajectories. These findings are the first to suggest that while the ability 
to recognize sequences that match the count-list as ‘in-order’ develops 
gradually, the ability to extend notions of ordinality beyond the count- 
list to include non-adjacent sequences is non-trivial and reflects a sig
nificant developmental hurdle that most children must overcome before 
they can develop a mature sense of ordinality. 
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“In this task, your job is to decide whether the three numbers
are in the correct order (from left to right).
If the numbers are in order, draw a line through the (�).
If the numbers are not in order, draw a line through the (�).

“Let’s practice the example problems here.**

“There will be problems on the backs of the pages as well.

“Make sure you don’t skip any problems.

“You should try to complete as many problems as you can. You
have 2 minutes. Work as fast as you can without making too many
mistakes. If you do make a mistake, draw an X through the
mistake and put a new line through the right answer.”

Number Ordering Instructions
Time Limit: 2 minutes

This is a timed task. Students may not turn the page and begin
working on the main set of problems until you start the timer
and tell them they can do so.

Be sure to watch the timer – students may spend no more than
two minutes working on this part of the screener.

**During practice items, point out and explain any mistakes.
Start with the top-left item and work across then down (the
student should do this on the test items as well).

For this task, it is especially important to work through the
example problems to ensure that students understand what it
means for numbers to ‘be in order’. The left two examples are in
order; the right two examples are not.

Fig. A.1. The exact directions and script provided to experimenters.  

Appendix B. Trial-List  

Table B.1 
Ordering trials in the order that they appear in the task booklet.  

Trial # Sequence Type 

1 2 – 3 – 4 In-Order Adjacent (OA) 
2 2 – 1 – 3 Mixed-Order Adjacent (MA) 
3 7 – 9 – 8 Mixed-Order Adjacent (MA) 
4 3 – 4 – 5 In-Order Adjacent (OA) 
5 1 – 2 – 3 In-Order Adjacent (OA) 
6 7 – 5 – 9 Mixed-Order Non-Adjacent (MNA) 
7 5 – 6 – 7 In-Order Adjacent (OA) 
8 6 – 2 – 4 Mixed-Order Non-Adjacent (MNA) 
9 6 – 4 – 5 Mixed-Order Adjacent (MA) 
10 1 – 3 – 5 In-Order Non-Adjacent (ONA) 
11 6 – 7 – 8 In-Order Adjacent (OA) 
12 3 – 5 – 7 In-Order Non-Adjacent (ONA) 
13 6 – 8 – 7 Mixed-Order Adjacent (MA) 
14 2 – 4 – 3 Mixed-Order Adjacent (MA) 
15 5 – 7 – 9 In-Order Non-Adjacent (ONA) 
16 8 – 4 – 6 Mixed-Order Non-Adjacent (MNA) 
17 4 – 5 – 6 In-Order Adjacent (OA) 
18 4 – 6 – 8 In-Order Non-Adjacent (ONA) 
19 5 – 3 – 7 Mixed-Order Non-Adjacent (MNA) 
20 4 – 5 – 3 Mixed-Order Adjacent (MA) 
21 6 – 7 – 5 Mixed-Order Adjacent (MA) 
22 7 – 8 – 9 In-Order Adjacent (OA) 
23 3 – 5 – 1 Mixed-Order Non-Adjacent (MNA) 
24 2 – 4 – 6 In-Order Non-Adjacent (ONA) 
25 4 – 6 – 5 Mixed-Order Adjacent (MA) 
26 1 – 3 – 2 Mixed-Order Adjacent (MA) 
27 4 – 2 – 6 Mixed-Order Non-Adjacent (MNA) 
28 2 – 3 – 4 In-Order Adjacent (OA) 
29 7 – 3 – 5 Mixed-Order Non-Adjacent (MNA) 

(continued on next page) 
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Table B.1 (continued ) 

Trial # Sequence Type 

30 4 – 6 – 8 In-Order Non-Adjacent (ONA) 
31 8 – 7 – 9 Mixed-Order Adjacent (MA) 
32 6 – 7 – 8 In-Order Adjacent (OA) 
33 3 – 4 – 5 In-Order Adjacent (OA) 
34 5 – 6 – 7 In-Order Adjacent (OA) 
35 3 – 1 – 5 Mixed-Order Non-Adjacent (MNA) 
36 5 – 9 – 7 Mixed-Order Non-Adjacent (MNA) 
37 2 – 4 – 6 In-Order Non-Adjacent (ONA) 
38 4 – 5 – 6 In-Order Adjacent (OA) 
39 5 – 3 – 4 Mixed-Order Adjacent (MA) 
40 7 – 5 – 6 Mixed-Order Adjacent (MA) 
41 3 – 5 – 7 In-Order Non-Adjacent (ONA) 
42 7 – 8 – 6 Mixed-Order Adjacent (MA) 
43 6 – 8 – 4 Mixed-Order Non-Adjacent (MNA) 
44 1 – 2 – 3 In-Order Adjacent (OA) 
45 3 – 4 – 2 Mixed-Order Adjacent (MA) 
46 5 – 7 – 9 In-Order Non-Adjacent (ONA) 
47 7 – 8 – 9 In-Order Adjacent (OA) 
48 1 – 3 – 5 In-Order Non-Adjacent (ONA)  
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