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A B S T R A C T

Not all researchers interested in human behavior remain convinced that modern neuroimaging techniques have much to contribute to distinguishing between
competing cognitive models for explaining human behavior, especially if one removes reverse inference from the table. Here, we took up this challenge in an attempt
to distinguish between two competing accounts of the problem size effect (PSE), a robust finding in investigations of mathematical cognition. The PSE occurs when
people solve arithmetic problems and indicates that numerically large problems are solved more slowly and erroneously than small problems. Neurocognitive
explanations for the PSE can be categorized into representation-based and process-based views. Behavioral and traditional univariate neural measures have struggled
to distinguish between these accounts. By contrast, a representational similarity analysis (RSA) approach with fMRI data provides competing hypotheses that can
distinguish between accounts without recourse to reverse inference. To that end, our RSA (but not univariate) results provided clear evidence in favor of the
representation-based over the process-based account of the PSE in multiplication; for addition, the results were less clear. Post-hoc similarity analysis distinguished
still further between competing representation-based theoretical accounts. Namely, data favored the notion that individual multiplication problems are stored as
individual memory traces sensitive to input frequency over a strictly magnitude-based account of memory encoding. Together, these results provide an example of
how human neuroimaging evidence can directly inform cognitive-level explanations of a common behavioral phenomenon, the problem size effect. More broadly,
these data may expand our understanding of calculation and memory systems in general.

1. Introduction

The problem size effect (PSE) is a well-known phenomenon in
mental-arithmetic and probably the most studied effect in the history of
mathematical cognition (e.g., Ashcraft, 1992; Campbell and Xue, 2001;
Zbrodoff and Logan, 2005). Problems with large operands (8 + 9,
6 × 8) take longer to solve and produce more errors than problems
with small operands (4 + 2; 3 × 4; Zbrodoff and Logan, 2005). At the
neural level, the PSE has been examined primarily using univariate
approaches, identifying various regions that show differences in uni-
variate activity as a function of problem size, with increased activity for
large compared to small problems in a network of frontal, parietal and
temporal regions (De Smedt et al., 2011; Jost et al., 2011; Grabner
et al., 2013; Prado et al., 2013; Menon, 2015, for a review). As it is a
robust effect that characterizes much of arithmetic processing, under-
standing the mechanisms that underpin the PSE can also expand our
understanding of how the brain achieves simple arithmetical proces-
sing.

Cognitive explanations of the PSE tend to fall broadly into two
different categories, which could be labeled as representation-based and
processing-based accounts (Ashcraft and Guillaume, 2009). Behavioral

and traditional univariate approaches to fMRI data have struggled to
distinguish between these two competing accounts without recourse to
reverse inference (Coltheart, 2006; Anderson, 2014). The present study
uses human neuroimaging data to distinguish between these two ac-
counts of the PSE via representational similarity analysis (RSA;
Kriegeskorte et al., 2008; Davis and Poldrack, 2013). Rather than
looking at the difference in neural activation between conditions, RSA
allows one to look at the relative similarity in spatial patterns of neural
activation within conditions. Interestingly and key to the current study,
the representation-based account and processing based account make
competing predictions withe respect to the similarity in spatial patterns
of brain activity for small and large problems, as we elaborate in more
detail below.

Representation-based accounts focus on how arithmetic facts are
stored or represented in memory, and on the various factors that impact
the representation and retrieval of this memory trace (e.g., Ashcraft,
1987; Siegler and Shrager, 1984; Campbell, 1995). In general, this view
predicts that the representations of small problems will be more precise
and less overlapping than the representations of large problems. Within
the representation-based account, there are various explanations for
this difference in representational overlap between small and large
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problems. One such explanation focuses on the order and frequency
with which arithmetic problems are learned and practiced. More fre-
quently taught problems (i.e., small problems) are predicted to have a
higher strength of representation and are consequently more distinctive
(i.e., less overlapping). This distinctiveness is also characterized by a
recent history comprising fewer erroneous retrievals (Siegler and
Shrager, 1984), leading to a more ‘peaked distribution of associations’
(between stimulus and correct response), which in turn implies greater
likelihood of retrieving the correct answer. By contrast, larger problems
are learned later and encountered and practiced less frequently. As a
result, they are stored in memory less distinctively with greater overlap
in memory traces. Large problems will have a more widely spread
distribution of associations due to a greater history of errors – i.e., a
given problem is linked to a greater number of answers or outputs with
a broader or less peaked distribution around the correct answer. Larger
problems with a widely-spread distribution of associations will be
solved more slowly and more erroneously because the correct answer is
likely to achieve retrieval threshold less efficiently (Ashcraft, 1987;
Ashcraft and Christy, 1995; McCloskey and Lindemann, 1992).

A second explanation within the representation-based account ex-
plains the PSE by recourse to representations of problem magnitude
(Campbell, 1995). Specifically, a widespread ‘tuning-curves’ model of
magnitude representation posits that larger quantities are represented
less precisely, such that the representations of two large quantities (e.g.,
8 and 9) are expected to overlap to a greater extent than two smaller
quantities (e.g., 1 and 2), holding distance constant (Piazza et al., 2004;
Lyons et al., 2015). In his network interference model of arithmetic
facts, Campbell (1995) proposed that greater representational overlap
for large problems in turn results in greater interference – and hence
worse performance – on large relative to small problems.

Processing-based accounts focus on the various processes – typically
in the form of different strategies – that are used to solve small and
large problems (e.g., LeFevre et al., 1996; Campbell and Xue, 2001). In
this account, small problems tend to rely on very similar processing
strategies, such as fact retrieval. Large problems, on the other hand, are
predicted to be solved by procedural strategies, which consists of a
much more diverse set of processing strategies, such as decomposing a
problem in a series of other problems [e.g., 8× 7 can be decomposed
into (72) + 7], rounding [e.g., 9 × 7 = (10 × 7) –7], transforming
[e.g., 8 × 5 = 2 × (4 × 5)], and even counting. This account predicts
that there should be greater similarity when processing small problems,
as they involve more similar processing strategies; larger problems
should be less similar due to a more heterogeneous set of processing
strategies.

It is important to note that, with respect to the PSE, both re-
presentation and process-based accounts make similar predictions for
behavior (poorer performance on larger relative to smaller problems)
and univariate analysis of neural data (greater activity for large relative
to small problems). One might make differing predictions for the dif-
ferent views with regard to observing the PSE in different sets of brain
regions; however, it is difficult to see how to do this without obvious
(and hence problematic) recourse to reverse inference. Crucially,
however, representation-based and processing-based accounts make
competing predictions with respect to similarity of patterns of neural
responses for small and large problems even within the same brain region
(thus largely circumventing the issue of reverse inference). Specifically,
as reviewed above, Representation-based views posit that the re-
presentations of individual numerically small problems (2 + 1, 3 × 4)
are relatively distinct from one another, with more narrowly tuned
distributions due to less overlapping representations. Consequently, the
neural similarity of distributed patters of neural activity among small-
problems should be low. Large-problems (8 + 9, 6 × 8) elicit broader,
more overlapping distributions, and should thus show relatively high
neural similarity with one another. If a given brain area shows greater
similarity for large relative to small problems, this would provide support
for a representation-based account of the PSE. By contrast, Processing-

based accounts of the PSE rely on the notion that small-problems are
solved via a narrow range of highly consistent strategies, which should
lead to high similarity values among small-problems. Large-problems,
being solved by a wider range of more variegated strategies should
yield lower similarity values with one another. If a given brain area
shows greater similarity for small relative to large problems, this would
provide support for a processing-based account. To conclude, RSA allows
us to characterize the manner in which each brain area's response
corresponds to one PSE account or the other (or neither) based on its
own pattern of neural responses, rather than relying on reverse in-
ference (Poldrack, 2011; Davis and Poldrack, 2013). This approach can
thus provide clear elucidation of the neurocognitive mechanisms under-
lying the PSE that is difficult to obtain in behavioral or traditional
univariate approaches (Coltheart, 2006).

We assessed the PSE in multiplication and addition mental ar-
ithmetic. Behavioral data were acquired prior to scanning; fMRI data
were acquired in a manner that isolated arithmetic computation from
response-selection. Univariate contrasts were used to establish whether
a given region was sensitive to relative problem-size. RSA was then
used to assess how the underlying neural patterns were modulated by
problem-size. Specifically, for multiplication and addition separately,
we assessed the similarity among small-problems and the similarity
among large-problems to test the abovementioned competing predic-
tions. To summarize: Regions consistent with a representation-based
account should show greater similarity among large relative to small
problems; regions consistent with a process-based account of the PSE
should show greater similarity among small-relative to large-problems.

2. Methods

2.1. Participants

Thirty adults from Ghent University participated in the experiment
(22 female, mean age= 24yrs, range: 18–27yrs, all right-handed). All
participants had normal or corrected-to-normal vision and reported no
history of neurological or psychiatric illness. Prior to taking part in the
study, participants gave written consent and all participants were paid
€40 for their participation. The study was approved by the Medical
Ethical Committee of Ghent University and Ghent University Hospital.

Due to movement artifacts (4 participants), technical acquisition
problems (1 participant) and diagnosis of dyslexia and dyscalculia (1
participant), 6 participants in total were excluded from further ana-
lyses, leaving a final sample of 24 participants.

2.2. Procedure

All experiments were controlled by E-Prime (Psychology Software
Tools, Pittsburg, PA) and displayed on a 1600×900-resolution screen.
Participants performed an arithmetic task both prior to and during
scanning. The computer was placed on average 50 cm in front of the
participant for the behavioral task. In the scanner, the experiment was
presented using a Brainlogics 200MR digital projector, which was
visible via a mirror attached to the head coil, with a viewing distance of
120 cm.

2.3. Tasks

We should note that the data reported here are part of a larger
dataset; all results reported here are unique and address hypotheses
that do not overlap with prior publications arising from this dataset
(Tiberghien et al., 2019). Both the pre-scan and fMRI arithmetic tasks
included three operations: multiplication, addition and subtraction.1

1 Subtraction was included for analysis projects not immediately related to
the hypotheses being tested here. In particular, here we restrict the focus
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Operation order was fully randomized across participants, so the pre-
sence of subtraction problems should not yield systematic biases when
considering just the multiplication and addition problems.

2.3.1. Pre-scan arithmetic task
The pre-scan arithmetic task was a production task (i.e., a task

where the participant needed to generate the answer) containing all
permutations of two operands ranging from 0 to 10 (121 total pro-
blems) with three different arithmetic operations: addition, multi-
plication and subtraction (resulting in a grand total of 363 problems).
All problems were presented once, with order randomized across par-
ticipants. A trial started with a fixation (i.e., three squares) presented
for 3000msec followed by the arithmetic problem. The problem re-
mained on the screen until the participant responded. Once the parti-
cipant has said the response out loud, a voice-key recorded the onset of
speech. Then, the experimenter recorded the response of the participant
and recorded if the voice-key triggered correctly – i.e., whether another
sound (e.g., “ehm” or a cough) triggered the voice-key. If indeed the
voice-key was falsely triggered on a certain problem, that problem re-
appeared later in the experiment. The inter-trial-interval was
1000msec This procedure was repeated until the participant had solved
all 363 problems with a valid registration of voice-key reaction time for
each problem. Intermittent breaks were given after every 33 trials.

2.3.2. Arithmetic task – fMRI version
The arithmetic task inside the scanner was kept as similar to the pre-

scan version as possible: all problems ranging from 0 to 10 were used in
addition, multiplication and subtraction, resulting in a grand total of
363 problems. Trials were divided as evenly as possible across 6 sepa-
rate runs, with trial (and hence also run) order randomized across
participants. As in the pre-scan task, a trial started with a fixation
presented for 3000msec followed by the first arithmetic problem. Here,
the problem (e.g., 9× 8) remained on the screen for 2600msec Our
goal was to separate the mental calculation aspects of arithmetic pro-
cessing from response preparation and execution. Participants were
instructed to mentally compute the answer during this period. For most
trials, the problem was then replaced by fixation. For 10 percent of
trials, a response was required, in which case the problem was replaced
by two response possibilities for 1500msec One number was the correct
response, while the other number was the correct response±1.
Participants pressed either a left or a right key (with left or right index
finger) to indicate which was the correct answer. This was followed by
fixation. Inter-trial interval was jittered (range=1000–8194msec,
mean=3421msec) for all trials. Response events were modeled as
events of no interest.

Accuracy for problems of the scanner-task was high (Multiplication:
M=93.9%, SE=1.5%; Addition: M=95.0%, SE=1.2%) and com-
parable to the pre-scan task outside the scanner (Multiplication:
M=93.9%, SE=0.8%; Addition: M=98.5%, SE=0.2%). Average
response-times were in fact faster than those seen for the pre-scan be-
havioral task (Multiplication-pre-scan: M=1150msec, SE=61msec;
Multiplication-in-scan: M=681msec, SE=19msec; Addition-pre-
scan: M=908msec, SE=33msec; Addition-in-scan: M=680msec,
SE=20msec), which is what one would expect if participants were
computing the answer during presentation of the problem (2600msec)

prior to appearance of the (occasional) verification probe. Further
evidence that participants were engaging with the task as instructed is
the presence of problem-size effects in the neural data (see Results).
That is, because fMRI analyses focused exclusively on the calculation
period (prior to response), it is difficult to explain how a problem-size
effect could have been observed during this period if participants were
simply ignoring problem presentation and waiting until the sporadic
presentation of response options to engage with the task.

2.4. fMRI data acquisition and preprocessing

Images were collected with a 3T Siemens Magnetom Trio MRI
system (Siemens Medical Systems, Erlangen, Germany) using a 32-
channel radio frequency head coil. Participants were positioned head-
first and supine in the magnet bore. Subjects were instructed to move
their heads as little as possible throughout the entire scanning session.
A whole-brain high-resolution anatomical scan was acquired using a
standard 3D MPRAGE sequence (voxel size= 1mm3). Functional
images were collected using an echo-planar imaging (EPI) sequence:
TR=2600msec, TE=28msec, flip angle= 80°. In-plane resolution
was 3.3 mm2 in a 64×64 matrix; slice thickness was 3.3 mm (44 slices,
ascending-interleaved acquisition, no skip between slices), yielding a
net field of view of 211.2× 211.2×145.2mm, comprised of 3.3mm3

isometric voxels.
Structural and functional images were analyzed using Brain Voyager

QX 20.4 (Brain Innovation, Maastricht, Holland). Functional data were
interpolated to 3mm3 in size. Next, they were corrected for slice scan-
timing using cubic spline interpolation, followed by 3D motion-cor-
rection (trilinear/sinc interpolation), and then high-pass filtered using a
GLM procedure with a Fourier basis set. Excessive motion was deemed
net drift > 3mm in a given run or >1.5mm sudden movement; par-
ticipants with runs exceeding these criteria were removed from analysis
(n=4). Participants’ functional images were then co-registered to their
respective anatomical scans using 12-parameter gradient-based affine
alignment, and anatomical images were co-registered into Talairach
space (Talairach and Tournoux, 1988). For univariate analyses, func-
tional data were spatially smoothed at 3mm FWHM; for multivariate
(RSA) analyses, unsmoothed data were used in order not to con-
taminate the patterns of activation across voxels. Multivariate analyses
were conducted using Matlab (2016a). Our a priori whole-brain uni-
variate statistical threshold was an uncorrected voxel-wise threshold of
p< .001, subsequently cluster-corrected for multiple comparisons
using a Monte Carlo simulation procedure (Forman et al., 1995) at
α<0.01.

For both the behavioral and univariate imaging analyses, to equate
the number of trials in each bin, we defined small problems as having
both operands smaller in the range 1–4 and large problems having both
operands in the range 6–9 (in keeping with previous studies; e.g.
Campbell and Graham, 1985; Prado et al., 2011). Dichotomizing pro-
blem size in this manner allowed us to characterize behavioral/neural
responses first within each category before contrasting between cate-
gories. This also aligned better with the RSA approach (described
below).

2.5. RSA analysis

2.5.1. Region of interest (ROI) selection
Our aim was to assess in what manner the underlying neural patterns

were modulated by problem size, thereby potentially allowing us to
distinguish between representation- and process-based accounts of the
PSE. A reasonable precondition for distinguishing between accounts
would be to establish whether a given region demonstrates sensitivity to
relative problem size in the first place – i.e., via a standard univariate
contrast.

A major advantage of this approach is that it significantly reduces
the need for reverse inference in interpreting the RSA results in regions

(footnote continued)
exclusively on multiplication and addition because it is not always clear whe-
ther the PSE in subtraction should consider the solution size or the operand size.
This is doubly problematic in the current study, as all three operations were
equated in terms of operands, meaning that, for instance, the ‘large’ operands in
9–8 generate a ‘small’ solution (1). Moreover, half of the subtraction problems
yielded negative solutions. In multiplication and addition, this is not an issue
because solutions will never be negative (all operands≥0), and the solutions to
problems with large operands will always be larger than problems with small
operands.
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known (in this dataset) to be sensitive to the primary effect of theore-
tical interest: the PSE. By analogy, it would seem odd to examine the
neural underpinnings of a behavioral ‘effect’ that was not actually
present in the behavioral data, which is a distinct possibility when using
a searchlight approach to RSA. To see this, one can imagine a search-
light analysis that yielded several regions showing a hypothesized si-
milarity result. However, if only a subset of regions show a univariate
PSE, how, then, should one interpret the regions showing a significant
RSA PSE but not a univariate PSE? A standard response is to rely (im-
plicitly or explicitly) on reverse inference, but we do not condone that
practice as a primary method of drawing meaningful conclusions about
cognitive theory. Because our goal was to use neural data to distinguish
between different theoretical views, here we elected to restrict RSA for
a given operation to regions showing a significant PSE (in either di-
rection) for that operation via a whole-brain univariate contrast. This
also allowed us to situate our univariate results with respect to those
already published.

Furthermore, beyond the clear theoretical motivation outlined
above, it is also important to point out that our univariate-to-multi-
variate approach does not constitute ‘double-dipping’. First, from a
theoretical standpoint, the questions being asked by the two analyses
are distinct: the univariate contrast assesses whether a region is sensitive
to relative problem size; the RSA analyses assess in what manner this
sensitivity manifests. Second, this approach is not statistically biased.
The ROIs are being identified via a within-subjects contrast between
large (averaged together) and small (averaged together) problems.
Because a within-subjects contrast takes into account the correlation
between conditions, it is the case that one would expect to see inflated
correlations between small and large problems. However, there is no
reason to assume inflated correlations within problems of a given con-
dition – i.e., small∼ small and large∼ large correlations. Most cru-
cially, there is still less (statistical) reason to expect that the correlations
within one condition should systematically differ from those within the
other condition – i.e., that small∼ small correlations should be greater
than large∼ large correlations, or vice versa. In this way, the ROI se-
lection here is both theoretically driven and, crucially, not a form of
‘double-dipping’.

2.5.2. RSA model
An important prerequisite for this set of analyses is to assess simi-

larity between problems within a given category (e.g., within small
addition problems). This allows one to compute PSEs (large-addition
similarity versus small-addition similarity). To assess similarity within a
given category, one could compute the similarity between each pair of
problems in that category (1 + 1 ∼ 1 + 2, 1 + 2 ∼ 1 + 3, etc.) and
then average over these similarity value estimates (r-values). Each sti-
mulus (problem) was presented only once in the current dataset, so to
analyze each stimulus separately would require us to rely on activity
estimates based on a single event. Similarity computations between
individual events were therefore likely to carry a substantial amount of
noise. Thus, we adopted a different approach based on the ‘operand
families’ method developed by LeFevre and Morris (1999) that involves
binning responses according to a specific operand value (similar to
‘times tables’). Within each operation, we created a predictor that in-
cluded all problems/events involving that operand (e.g., ‘Addition-9’,
or ‘A09’: 9 + 0, 9 + 1, 9 + 2… 9+ 10). We then used this predictor to
extract average intensity values (for a given subject) that included all
21 addition events which involved a 9 in any fashion. This approach
significantly increases the precision of our activity estimates for each
operand as it now comprises 21 events instead of just one event. The
end result, for each operation, was 11 activity estimates corresponding
to the operands 0–10 (which we write, for addition, ‘A00’, ‘A01’ …
’A10’; for multiplication, ‘M00’, ‘M01’ … ’M10′). In this way, we gen-
erated activity estimates in each voxel for each predictor. In a given
ROI, we extracted and vectorized the distributed activity pattern across
functional voxels for each predictor. We then correlated these vectors

(e.g., ‘M00’, ‘M01’ … ’M10′) with one another to generate an 11 × 11
correlation matrix. For present purposes, we were interested in PSEs,
and to keep these analyses consistent with the behavioral and uni-
variate analyses above, we then averaged similarity estimates between
operands within each size category (small: 1∼2, 1∼3 … 3∼4; large:
6∼7, 6∼8 … 8∼9; we took only the lower triangle in each case given
matrix symmetricity over the main diagonal). The above process was
repeated for each subject separately. In this way, for each subject, we
extracted within-category similarity estimates for each operation (ad-
dition, multiplication) at each size (small, large). Statistical tests were
performed by comparing Fisher-z-transformed r-values (large – small)
across 24 subjects.

One potential downside of this approach is that, for within opera-
tion similarity estimates, a pair of predictors/operands shared 2 of their
21 respective events. For example, the ‘A01’ and ‘A02’ both contain
‘2 + 1’ and ‘1 + 2’. This will of course modestly inflate expected
correlation (similarity) values above an expected mean value of 0. First,
this inflation should impact all similarity values equally because all
pairs of predictors/operands shared exactly 2 events; thus comparing
similarity values against one another should not be biased by this in-
flation factor. On the other hand, comparing similarity values against 0
(i.e., to test if similarity in a given category differs from chance), will
indeed be biased. To correct for this, we ran 100,000 simulations as-
suming the same parameters as the current dataset but with randomly
generated values instead, and found an average inflation factor of 0.093
(r-values were 0.093, on average, instead of the expected value of 0).
Hence, 0.093 was subtracted from all within-operation similarity esti-
mates. Complete similarity matrices (corrected in the manner just de-
scribed) can be found in Supplementary Information.

Another point is that these operand-based predictors contained in-
formation from both small and large problems. For instance, A01 con-
tained information from 1 + 8 and 9 + 1. However, this in fact works
against our hypotheses, as it should reduce the likelihood of finding a
statistically significant PSE; by making our predictors a priori more
similar in terms of size, finding differences in similarity as a function of
size is thus made more difficult. Finally, we also demonstrate the va-
lidity of this modeling approach by using it to recompute the behavioral
results (see Fig. 1), which showed very similar PSEs to those found
using the more traditional approach described above.

3. Results

3.1. Behavioral results

3.1.1. Traditional approach
As expected for such simple arithmetic problems, accuracy on all

operations was near ceiling (all problems: M=96%, SE<0.01%; ad-
dition: M=98%, SE<0.01%; multiplication: M=94%, SE=0.01%).
Thus, we focus here instead on reaction times (RTs), which are sum-
marized in Table 1. The problem size effect (PSE) was highly significant
for both multiplication (Large–Small: M=719.03msec, SE=95.66; t
(23)= 7.52, p< .001, d=1.53) and addition (Large–Small:
M=257.39msec; SE=30.60; t(23)= 8.41, p< .001, d=1.72).

3.1.2. Operand-bin method
To verify the operand-bin model used for the RSA model (see

Methods), we binned behavioral RT data (pre-scan behavioral task)
using this method. Fig. 1 shows these data. To calculate PSEs, we
computed each individual participant's regression slope with RT as
dependent variable and Operand Size (0–10) as the predictor. We then
used a one-sample t-test on these slopes (betas) across participants
(N=24). This procedure was repeated for each operation separately.
The results showed that there was a highly significant positive slope for
both operations: Multiplication: t(23)= 8.01, p< .001; Addition: t
(23)= 8.37, p< .001. Thus, behavioral data analyzed in the same
manner as the RSA data yielded PSEs highly comparable to the more
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traditional means of computing PSEs used in the main text. This in-
dicates the operand-bin model is capable of detecting the influence of
problem-size (an assumption critical to the RSA approach adopted
here).

Fig. 1. RT data using the operand-bin model (identical to that used in the RSA model). Values here are averaged across participants. Error-bars indicate standard-
errors.

Table 1
Pre-scan RTs.

Small Large

Addition 781 (29) 1038 (45)
Multiplication 830 (30) 1549 (113)

Note: Mean reaction times (msec) and standard errors in parentheses.

Fig. 2. Whole-brain univariate PSE Regions for Multiplication. See Table 2 for region abbreviations. All regions: Large> Small.
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3.2. Univariate fMRI results

3.2.1. Multiplication
A standard voxel-wise GLM was run with separate predictors for

small and large multiplication and addition. Small and large predictors
comprised trials in the same manner as the behavioral results (other
trials and response events were modeled as events of no interest). Brain
areas that showed a PSE were identified for multiplication and addition
separately by contrasting Large and Small predictors (agnostic to di-
rection).

For multiplication, significant PSEs (large> small) were identified
in a network including bilateral intraparietal sulci (IPS), left ventral
temporal-occipital junction (LTOJv), multiple prefrontal regions, and
several subcortical regions including dorsal striatum and cerebellum.
Regions are shown in Fig. 2, and a complete list of regions – along with
region details, abbreviations and activity estimates – can be found in
Table 2. Note that several very large regions clearly spanned multiple
cortical areas; these were each split into sub-regions using a standard k-
means clustering algorithm (Lloyd, 1982) based on Talairach co-
ordinates.2 No regions showed the reverse pattern (small> large).

3.2.2. Addition
For addition, no regions showed a significant PSE using the more

conservative a priori whole-brain threshold (voxelwise p< .001,
cluster-corrected at α<0.01). However, several regions were

significant at the slightly more liberal threshold of voxelwise p< .005,
cluster-corrected at α<0.01. Because (1) our primary focus was not on
the univariate but the RSA results, and (2) this slightly more liberal
threshold is still not unreasonable in the field (Cunningham & Koscik,
2017; Slotnick, 2017), we deemed it advisable to avoid a potentially
obvious Type II error and so proceeded with this lower threshold for
these addition problems. Still, caution may be warranted when inter-
preting the results for addition. Several regions showed a standard PSE
(large> small) for addition, including PreSMA and bilateral IPS and
LTOJv. Note that each of these regions overlapped with similar regions
seen for multiplication. Two regions showed a reversal of the PSE
(small> large): left AGd and RIFGa. Regions are shown in Fig. 3, and a
complete list of regions – along with region details, abbreviations and
activity estimates – can be found in Table 3.

3.3. Representational similarity analysis (RSA) results

In this section, we assessed similarity within each small and large
condition (separately, for multiplication and addition). By contrasting
the relative similarity among large problems with the similarity be-
tween small problems, we thus tested whether the regions showing a
significant univariate PSE exhibited similarity patterns more consistent
with a representation- or process-based account of the PSE. RSA for a
given operation was conducted in the corresponding regions from the
previous section (i.e., those in Table 2 for multiplication and those in
Table 3 for addition). Because r-values are bounded between −1 and 1
and are not normally distributed, all statistical tests are computed over
Fisher-z-transformed r-values [z=atanh(r); values reported in Figs. 4a
and 5a are thus z-values as well]. Finally, here we adopt a more net-
work-based view in that arithmetic is best characterized by a network
of regions working in concert (Menon, 2015). Furthermore, the primary
goal of the present paper was to use neuroimaging data to distinguish
between two classes of theoretical explanations formulated at the
cognitive level for a behavioral and neural (univariate) phenomenon.
For these reasons, and to protect against reverse inference, we focus on
overall patterns of results as opposed to interpreting each ROI in iso-
lation.

Fig. 4a shows RSA results for multiplication. In all 22 regions,
large∼ large similarity tended to be higher than small∼ small simi-
larity. Fig. 4b shows results from directly contrasting large and small
similarity values (shown as effect-sizes). 21 of 22 regions showed a
significant large> small similarity-based PSE at p< .05 (higher than
the dotted line in Fig. 4b), and 17 of 22 regions showed an effect that
was significant at the more stringent threshold of p< .0023 (higher
than the bold dashed line in Fig. 4b; this p-value was determined by
correcting for 22 comparisons via the Dunn- Šidák method; Šidák,
1967). The probability of 21 of 22 regions obtaining significance at
p< .05 by chance is roughly 1E-26; the probability of 17 of 22 regions
obtaining significance at p< .0023 by chance is roughly 4E-41. We
thus consider the evidence in favor of the representation-based account
of the PSE in multiplication to be strong.

Fig. 5a shows RSA results for addition. Results for addition were less
conclusive than for multiplication. In just 2 of the 7 regions was
large∼ large similarity significantly higher than small∼ small simi-
larity. Further, Fig. 5b shows that these two regions, LTOJv and RIFGa,
showed a similarity-based PSE that only passed only the more liberal
threshold of p< .05. The probability of 2 of 7 regions obtaining sig-
nificance at p< .05 by chance is 0.041, which, while significant, is
perhaps underwhelming. Moreover, one of the two regions (RIFGa) in
fact showed a reversed PSE in the univariate results, which somewhat
clouds the interpretation of the PSE in the RSA results. Furthermore, it
is worth remembering that the univariate addition PSE was revealed
only once we lowered the threshold. We thus consider the evidence in
favor of the representation-based account of the PSE in addition to be
somewhere between marginal and unconvincing.

Table 2
Univariate PSE region details – multiplication.

Talairach Coordinates Size Beta Estimates

Region x y z (mm3) Large Small

LDLPFC −42.3 14.2 29.4 4803 .56 (.07) .00 (.06)
RDLPFC 42.3 8.4 30.4 541 .44 (.07) -.04 (.07)
LINSa −31.4 18.4 6.6 4139 .52 (.07) -.08 (.05)
RINSa 34.1 19.0 4.9 4020 .50 (.07) -.08 (.05)
LSFSa −31.9 51.8 19.9 498 .33 (.07) -.10 (.06)
RSFSa 31.2 46.6 22.8 578 .34 (.07) -.06 (.06)
LFEF −28.1 −2.6 55.4 696 .53 (.07) .03 (.05)
LIPSa −34.0 −45.9 42.1 3680 .73 (.06) .16 (.06)
LIPSp −24.1 −63.5 42.9 4545 .78 (.08) .17 (.06)
RIPSp 27.7 −56.8 43.2 3017 .53 (.06) .03 (.06)
LPRC −6.9 −68.7 41.3 695 .39 (.08) -.11 (.07)
LTOJv −46.8 −60.1 −6.4 1071 .58 (.07) .16 (.06)
ACCd 1.3 19.4 34.2 5548 .50 (.06) -.04 (.05)
PreSMA −0.1 8.8 49.5 4155 .73 (.09) .09 (.05)
PCC −1.4 −23.4 27.0 924 .38 (.05) -.08 (.07)
LSTRId −15.2 5.3 7.0 2305 .47 (.05) .01 (.07)
RSTRId 15.0 7.0 8.7 1555 .50 (.06) .05 (.07)
LTHALdm −10.7 −6.1 14.7 1841 .38 (.05) -.07 (.06)
RTHALdm 9.4 −6.5 10.2 802 .34 (.05) -.08 (.06)
RCBMd 30.6 −59.9 −20.9 1530 .52 (.06) .05 (.06)
RCBMv 29.4 −62.0 −38.9 787 .47 (.07) -.06 (.05)
MCBMp 2.99 −73.8 −18.9 2228 .34 (.06) -.09 (.05)

Note: Region Abbreviations: leading L= Left, leading R= right, leading
M=middle; a= anterior, p= posterior, d= dorsal, v= ventral, m=medial;
DLPFC=dorsolateral prefrontal cortex, INS= insula, SFS= superior frontal
sulcus, FEF= frontal eye field, IPS= intraparietal sulcus, PRC=precuneus,
TOJ= temporal-occipital junction, ACC= anterior cingulate cortex,
PreSMA=pre-supplementary motor area, PCC=posterior cingulate cortex,
STRI= striatum, THAL= thalamus, CBM= cerebellum. For beta estimates,
values shown are averaged across participants (with standard errors in par-
entheses).

2 Regions split in this way were as follows: a large frontal midline region was
split into pre-supplementary motor area (PreSMA) and dorsal anterior cingulate
cortex (ACCd); a large region running the length of the left IPS was split into
anterior (LIPSa) and posterior (LIPSp) regions; large bilateral subcortical re-
gions were each split into dorsal striatum (STRId) and dorso-medial thalamus
(THALdm).
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3.3.1. Post-hoc RSA
Our main conclusion from the previous section was that the PSE in

multiplication is best explained by a representation-based account,
wherein smaller problems are represented more distinctly (lower si-
milarity) relative to larger problems (higher similarity). That said, even
within the representation-based view of the PSE, there is not always
agreement about the ultimate source of the PSE, as one could further
distinguish between memory-based and magnitude-based versions of
representation-centered accounts of the PSE. Memory-based accounts
place explanatory emphasis on the frequency of input and, relatedly,
the order in which the input is learned; in other words, the quality of
retrieval association between stimulus and response. Smaller problems
are encountered more frequently and learned earlier, and so the quality

(in the form of narrower or more ‘peaked’ distributions) of associations
is higher relative to large problems, which are encountered less fre-
quently and learned later, thus incurring lower quality (broader and
more overlapping) associations (e.g., Ashcraft, 1987; Ashcraft and
Christy, 1995; De Visscher and Noël, 2014; McCloskey and Lindemann,
1992; Siegler and Shrager, 1984). Magnitude-based accounts place
explanatory emphasis on the magnitudes of the operands in question:
the neural encoding of larger quantities occurs via neural tuning curves
that are wider and thus less finely tuned than the neural encoding of
smaller quantities, which have more exact (narrower and less over-
lapping) neural tuning curves (e.g., Nieder and Dehaene, 2009;
Campbell, 1995). Note that both accounts are representation-based
(one focusing on the strength and specificity of the memory-association-
trace and the other focusing on numerical magnitude), and both predict
the similarity-based PSE observed for multiplication in the previous
section. Knowing the results of the previous section, is there a post-hoc
test capable of distinguishing between memory- and magnitude-based
accounts?

To answer this question, it is informative to look at the multi-
plication problems involving the operand 10 (‘ten-problems’). In the
behavioral data using the operand-bin model (see Fig. 1), multiplication
shows a steep slope (the larger the operand, the larger the reaction
time); however, the slope drops quite sharply at the operand-bin ‘10’.
Thus, these ‘ten-problems’ are performed better than any other of the
large operand-bins (ranging from 6 to 9). Multiplication problems in-
cluding a ‘10’ (e.g., 4× 10) are often solved via direct memory re-
trieval. Hence, these problems tend to be performed faster and less
erroneously than problems with other operands (e.g., Hinault et al.,
2015; Lemaire and Reder, 1999; Siegler, 1988). Given that these pro-
blems have exceptional patterns of behavioral performance relative to
other problems, the question is thus how ten-problems manifest at the

Fig. 3. Whole-brain univariate PSE Regions for Addition. See Table 3 for region abbreviations. Orange: large> small; blue: small> large.

Table 3
Univariate PSE region details – addition.

Talairach Coordinates Size Beta Estimates

Region x y z (mm3) Large Small

LIPSa −42.8 −34.2 46.1 572 .50 (.07) .11 (.06)
LIPSp −28.3 −54.0 49.0 1034 .49 (.07) .12 (.06)
RIPSp 26.2 −56.7 49.0 686 .39 (.07) .01 (.06)
LTOJv −47.3 −53.9 −8.1 401 .38 (.08) .02 (.05)
PreSMA 1.4 6.5 49.2 645 .43 (.06) .08 (.06)
LAGd −52.3 −42.0 38.7 493 -.24 (.05) .08 (.05)
RIFGa 44.7 42.7 7.9 403 -.30 (.06) .06 (.05)

Note: Region Abbreviations: leading L=Left, leading R= right; a= anterior,
p= posterior, d= dorsal, v= ventral; IPS= intraparietal sulcus,
TOJ= temporal-occipital junction, PreSMA=pre-supplementary motor area,
AG=angular gyrus, IFG= inferior frontal gyrus. For beta estimates, values
shown are averaged across participants (with standard errors in parentheses).
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neural level.
More specifically, if a given problem's representation is purely based

on the underlying problem magnitude, then the similarity between ten-
problems and the problems we previously classified as ‘large’ (6–9)
should be just as high if not higher than that seen for large∼ large
similarity values computed in the previous section. In contrast, a
memory-based representation account would emphasize repeated
practice with operand-10 problems that leads to highly distinct memory
traces for these problems. Akin to what was observed for small pro-
blems above, a memory-based view would predict lower similarity

between ten-problems and ‘large’ problems relative to large∼ large
similarity values.

To test this explicitly, as in the previous section, large problems
were an average of the correlations of problems with operands 6–9
within a participant. Ten-problems were an average of the correlations
between operand-10 problems and the other large operands (operand-6
through operand-9), again computed within a participant. Average si-
milarity values (z-transformed r-values) for ‘Large’ and ‘Ten’ problems
are shown in Fig. 6a (orange and blue bars, respectively). Next, we
directly contrasted these values using a paired sample t-tests (Large –

Fig. 4. Similarity-Based PSE – Multiplication. Caption: Fig. 4a shows multiplication large∼ large and small∼ small similarity values (Fisher-z values). Fig. 4b shows
the similarity-based PSE (large – small) expressed as effect-sizes (d). Dotted line: p= .05; bold dashed line: p= .0023 (correcting for 22 comparisons).
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Ten); results are shown as effect-sizes in Fig. 6b.
From Fig. 6a, it is evident that the similarity between ten-problems

and large-problems tended to be relatively low – in fact lower than
large-large similarity values in all 22 regions. Looking at the direct
contrast in Figs. 6b and 20 of 22 regions showed a significant
large> ten difference (higher than the dotted line in Fig. 6b), and 18 of
22 regions showed an effect that was significant at the more stringent
threshold of p< .0023 (higher than the bold dashed line in Fig. 6b).
The probability of 20 of 22 regions obtaining significance at p< .05 by
chance is roughly 2E-24; the probability of 18 of 22 regions obtaining
significance at p< .0023 by chance is roughly 2E-44. We thus consider
the evidence in favor of the memory-based (as opposed to the magni-
tude-based) representational account of the PSE in multiplication to be
strong.

4. Discussion

The problem size effect (PSE) in arithmetic is one of the most robust
effects in mathematical cognition (e.g., Ashcraft, 1992; Zbrodoff and
Logan, 2005) where arithmetic performance tends to be better for nu-
merically small relative to large problems, and neural activity estimated
in a univariate fashion tends to be higher for large relative to small-
problems (Menon, 2015). The PSE is generally explained through two
different accounts: a representation-based and a process-based account.
By means of representational similarity analyses, we sought to disen-
tangle the two accounts.

One type of explanation tends to focus on how a given item is stored
or represented in memory, and on the various factors that impact this
memory trace. One such explanation highlights the frequency with
which arithmetic problems are taught in school. More frequently taught
problems (i.e., small problems) are predicted to have a higher strength
of representation. By contrast, large problems are stored in memory
with lower strength, which results in slower and more erroneous re-
sponses (Ashcraft, 1987; Ashcraft and Christy, 1995; McCloskey and
Lindemann, 1992). In a similar vein, Siegler and Shrager (1984) sug-
gested that problems with a lesser history of error (e.g., smaller pro-
blems) will have a more peaked ‘distribution of associations’, leading to
a larger likelihood of retrieving the correct answer. Large problems will
have a more widely spread distribution of associations (a given stimulus
is linked to a greater number of answers or outputs with a broader or
less peaked distribution around the correct answer). Problems with a
widely-spread distribution of associations are solved more slowly and
more erroneously because the correct answer is likely to achieve re-
trieval threshold less efficiently. In a computationally similar model,
the network interference model by Campbell (1995) also explains the

PSE by means of representations, but via representations of magnitude.
Large magnitudes have broader distributions which are present when
solving arithmetic problems. These broader distributions lead to greater
representational overlap which in turn results in greater interference –
and hence worse performance – on large relative to small problems.

A second type of explanation for the PSE tends to focus on the
various processes – typically in the form of different strategies – that are
used to solve small and large problems. A prominent example of this
type of explanation focuses expressly on strategic variation (LeFevre
et al., 1996; Campbell and Xue, 2001). In this view, small problems
tend to rely on similar processing strategies (e.g., retrieval), whereas
large problems require a more diverse set of processing strategies (e.g.,
estimation, calculation, transformation, etc.). The reduced efficiency
and increased variability of strategies for large problems leads to poorer
performance. In a similar vein, Campbell and Xue (2001) argued that
there are three strategy-related sources of the PSE: (1) less frequent
retrieval use for large relative to small problems (2) lower retrieval
efficiency (i.e., speed and accuracy), for large relative to small problems
and (3) lower procedural efficiency for large relative to small problems.

Behavioral approaches have struggled to distinguish between these
two accounts, and, to date, the neural basis of the PSE has been ex-
amined more or less exclusively using univariate approaches which
tend to show results that more or less mirror the behavioral results (e.g.,
regions showing differences in activity as a function of problem size; De
Smedt et al., 2011; Jost et al., 2011; Grabner et al., 2013; Prado et al.,
2013). Moreover, interpretations of these activity differences as they
pertain to specific cognitive explanations underlying the outward ef-
fects (behavioral or neural) have largely been driven by reverse in-
ference, which is highly problematic when interpreting fMRI data
(Poldrack, 2006, 2011). Thus, it is unclear how such univariate-based
approaches might notably shift the needle with respect to distin-
guishing between representation- and process-based accounts of the
PSE.

Using an RSA-based approach, our data clearly provided evidence
for a representation-based account (and against a process-based ac-
count) of the PSE in multiplication by showing higher similarity among
large relative to small problems. According to this view, large problems
should have more overlapping (and thus more similar) distributions.
Specifically, greater similarity for large problems indicates that large
problems may be less distinguished from one another in terms of their
respective neural patterns. Further evidence that multiplication pro-
cessing is characterized by the representation and retrieval of specific
memory traces (memory-based account) was seen in that large multi-
plication problems showed little or no similarity with ten-problems.
This is presumably because these problems can be solved by means of

Fig. 5. Similarity-based PSE – Addition. Caption: Fig. 5a shows addition large∼ large and small∼ small similarity values (Fisher-z values). Fig. 5b shows the
similarity-based PSE (large – small) expressed as effect-sizes (d). Dotted line: p= .05; bold dashed line: p= .0073 (correcting for 7 comparisons).
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retrieval that can override the underlying magnitude (e.g., Hinault
et al., 2015; Lemaire and Reder, 1999; Masse & Lemaire, 2001; Siegler,
1988). In other words, ten-problems failed to follow the standard pro-
blem-size progression one would expect based on magnitude alone, thus
essentially serving as the ‘exception that proves the rule’. Multiplication
problems are stored as individual representations which typically be-
come less distinct as problem-size increases; but some large problems
that can be solved via special rules or that occur much more frequently
than expected based on their size can break this trend, and in that case,
they are represented quite distinctly even with respect to other large
multiplication problems.

On a broader scale, we contend that these data provide an example
of how modern neuroimaging techniques may contribute to distin-
guishing between competing cognitive models for explaining human
behavior, even after largely removing reverse inference from the table.
An interesting upshot of this perspective is that it requires one to think
of the neural data as a dependent variable that must stand on its own

merit, and not something that is somehow privileged simply because
the data are derived from a neural source per se. Here, merit arises
because, when analyzed in a particular fashion, the data afford an op-
portunity to distinguish between competing theoretical predictions not
provided by other dependent variables, such as reaction time data.
Demonstrating that this variable (in this case similarity between neural
activity patterns) – clearly favored one set of predictions over another
in an obvious majority of candidate brain regions (Fig. 4) was sufficient
to accomplish the primary aim of the study without overt recourse to
reverse inference. That said, it is important to acknowledge that some
dependent variables can be hierarchical in nature. For instance, func-
tional characterization of specific brain areas highlighted here may be
possible in conjunction with existing or future work, and doing so may
be of interest especially for future studies designed expressly to test
such functionally specific predictions in specific brain areas.

A methodological consideration when interpreting the RSA results
for multiplication is the possibility that greater similarity for large

Fig. 6. Assessing ‘Ten Problems’. Caption: Fig. 6a shows multiplication large∼ large and ten large similarity values (Fisher-z values). Fig. 6b shows the contrast (large
– ten) expressed as effect-sizes (d). Dotted line: p= .05; bold dashed line: p= .0023 (correcting for 22 comparisons).
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problems may be driven simply by the fact that some or all of the re-
gions in question are not involved in processing small problems to begin
with. In this view, there is no systematic signal associated with small
problems in the regions revealed here, leading to similarity values close
to 0, which in turn speciously drives greater apparent similarity for
large relative to small problems. There are multiple aspects of the
current data that are inconsistent with this view, however. First, several
regions (ACCdp, LINSa, LPRC, LTHALd, MCBMp, PCC, PreSMA, RINSa,
RSFSa; Fig. 4, left) showed significant dissimilarity (negative similarity)
for small problems, indicating the presence of systematic signal in the
pattern-based data among small problems, and yet none of these areas
showed univariate activity significantly different from (above or below)
baseline (Table 2). The presence of systematic relations between vari-
ables within the small category is thus not dependent upon whether
univariate responses differed significantly from baseline. Approaching
the question from the opposite direction, several regions did show
significant positive univariate activity for small problems (LIPSa, LIPSp,
LTOJv; Table 2), and yet none of these showed significant similarity for
small problems (Fig. 4, left). Finally, for addition, we saw activity
substantially different from baseline for large problems in all 7 regions
(Table 3), and yet only 1 of the 7 (LTOJv) showed significant similarity
among large problems (Fig. 5, left). In other words, there are multiple
reasons to doubt a close contingency between univariate activity levels
and presence of sufficient signal to detect meaningful correlations via a
similarity-based approach.

Finally, it is important to acknowledge that RSA results were less
clear for addition. This may indicate that addition problems are re-
presented with highly distinct representations and therefore showed no
similarity (as in the representation-based account). If these problems
are indeed highly distinct, then most of the additions are likely to be
solved by retrieval. Indirect evidence favoring this view can also be
seen in that addition RTs were closer to the range of small multi-
plication RTs, and variability (standard errors) in addition RTs was
overall relatively low (also more similar to small multiplication pro-
blems; see Table 1 and Fig. 1). However, this interpretation is ad-
mittedly speculative; hence, at minimum, the current study underscores
the need for future studies to take into account arithmetic operation
when probing the neural bases of arithmetic in general.

To conclude, not all researchers interested in human behavior re-
main convinced that neuroscience – in particular modern neuroimaging
techniques – have much to contribute to distinguishing between com-
peting cognitive models for explaining human behavior (e.g., Coltheart,
2006), an issue that becomes all the more acute once one takes ser-
iously the notion of removing reverse inference from the table
(Anderson, 2014). Here, we took up this challenge in an attempt to
distinguish between competing accounts of the problem size effect
(PSE) in arithmetic. Our results provide clear evidence in favor of a
representation-based over a process-based account of the PSE in mul-
tiplication. Post-hoc analysis further distinguished between different
accounts within the broader family of representation-based accounts –
specifically, results favored a memory-based account of the PSE over a
strictly magnitude-based account. For addition, results were not nearly
as conclusive, though a cautious interpretation would slightly favor a
representation-based account for addition as well. Because behavioral
and univariate fMRI analyses can struggle to distinguish between the-
oretical accounts of the PSE in arithmetic, the fact that we found such
clear evidence for a representation-based account of the PSE in multi-
plication is an example of how investigating neural data can contribute
directly to our cognitive interpretation of a well-known behavioral
phenomenon. More broadly, this work may prove useful for under-
standing the origins of atypical mathematical development such as
dyscalculia (Butterworth et al., 2011), as difficulties in arithmetic are
the crucial feature of children with dyscalculia.

Funding information

This research was supported by Interuniversity Attraction Poles
Program of the Belgian Federal Government (P7/11), Ghent University
(GOA 01G01108) to Fias, Fund for Scientific Research – Flanders
(Belgium) (project G.0638.17) to De Smedt and Fias, Banting
Postdoctoral Fellowship to Lyons (National Sciences and Engineering
Research Council, Canada), Departmental Start-Up Funds to Lyons
(Georgetown University, Psychology Department) Travel Grant Faculty
Mobility Fund Ghent University to Lyons. The authors declare no fi-
nancial conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.neuropsychologia.2019.107120.

References

Anderson, M.L., 2014. After Phrenology: Neural Reuse and the Interactive Brain. MIT
Press, Cambridge, MA.

Ashcraft, M.H., 1987. Children's Knowledge of simple arithmetic. A developmental model
and simulation. In: Brainerd, C.J., Kail, R., Bisanz, J. (Eds.), Formal Methods in
Developmental Research. Springer-Verlag, New York, pp. 302–338.

Ashcraft, M.H., 1992. Cognitive arithmetic – a review of data and theory. Cognition 44
(1–2), 75–106.

Ashcraft, M.H., Christy, K.S., 1995. The frequency of arithmetic facts in elementary texts:
addition and multiplication in grades 1-6. J. Res. Math. Educ. 396–421.

Ashcraft, M.H., Guillaume, M.M., 2009. Mathematical cognition and the problem size
effect. Psychol. Learn. Motiv. 51, 121–151.

Butterworth, B., Varma, S., Laurillard, D., 2011. Dyscalculia: from brain to education.
Science 332 (6033), 1049–1053.

Campbell, J.I.D., Graham, D.J., 1985. Mental multiplication skill: structure, process and
acquisition. Can. J. Psychol. 39, 338–366.

Campbell, J.I.D., 1995. Mechanisms of simple addition and multiplication: a modified
network-interference theory and simulation. Math. Cogn. 1 (2), 121–164.

Campbell, J.I.D., Xue, Q., 2001. Cognitive arithmetic across cultures. J. Exp. Psychol.
Gen. 130 (2), 299–315.

Coltheart, M., 2006. What has functional neuroimaging told us about the mind (so far)?
(Position paper presented to the european cognitive neuropsychology workshop,
bressanone, 2005). Cortex 42 (3), 323–331.

Cunningham, W.A., Koscik, T.R., 2017 Jul 3. Balancing Type I and Type II error concerns
in fMRI through compartmentalized analysis. Cognit. Neurosci. 8 (3), 147–149.

Davis, T., Poldrack, R.A., 2013. Measuring neural representations with fMRI: practices
and pitfalls. Ann NY Acad Sci 1296 (1), 108–134.

De Smedt, B., Holloway, I.D., Ansari, D., 2011. Effects of problem size and arithmetic
operation on brain activation during calculation in children with varying levels of
arithmetical fluency. Neuroimage 57 (3), 771–781.

De Visscher, A., Noël, M.P., 2014. The detrimental effect of interference in multiplication
facts storing: typical development and individual differences. J. Exp. Psychol. Gen.
143 (6), 2380–2400.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995.
Improved assessment of significant activation in functional magnetic resonance
imaging (fMRI): use of a cluster‐size threshold. Magn. Reson. Med. 33 (5), 636–647.

Grabner, R.H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., 2013. The function of
the left angular gyrus in mental arithmetic: evidence from the associative confusion
effect. Hum. Brain Mapp. 34 (5), 1013–1024.

Hinault, T., Tiberghien, K., Lemaire, P., 2015. Age-related differences in plausibility-
checking strategies during arithmetic problem verification tasks. J. Gerontol. B
Psycho. Sci. Soc. Sci. 71 (4), 613–621.

Jost, K., Khader, P.H., Burke, M., Bien, S., Rösler, F., 2011. Frontal and parietal con-
tributions to arithmetic fact retrieval: a parametric analysis of the problem-size effect.
Hum. Brain Mapp. 32 (1), 51–59.

Kriegeskorte, N., Mur, M., Bandettini, P., 2008. Representational similarity analy-
sis–connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2.

LeFevre, J.A.1, Morris, J., 1999. More on the relation between division and multiplication
in simple arithmetic: evidence for mediation of division solutions via multiplication.
Mem. Cogn. 27 (5), 803–812.

LeFevre, J.A., Sadesky, G.S., Bisanz, J., 1996. Selection of procedures in mental addition:
reassessing the problem size effect in adults. J. Exp. Psychol. Learn. Mem. Cogn. 22
(1), 216.

Lemaire, P., Reder, L., 1999. What affects strategy selection in arithmetic? The example of
parity and five effects on product verification. Mem. Cogn. 27 (2), 364–382.

Lloyd, Stuart P., 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28
(2), 129–137.

Lyons, I.M., Ansari, D., Beilock, S.L., 2015 Feb. Qualitatively different coding of symbolic
and nonsymbolic numbers in the human brain. Human Brain Mapp. 36 (2), 475–488.

Masse, C., Lemaire, P., 2001 Feb 1. Do people combine the parity-and five-rule checking
strategies in product verification? Psychol. Res. 65 (1), 28–33.

McCloskey, M., Lindemann, A.M., 1992. MATHNET: preliminary results from a

K. tiberghien, et al. Neuropsychologia 132 (2019) 107120

11

https://doi.org/10.1016/j.neuropsychologia.2019.107120
https://doi.org/10.1016/j.neuropsychologia.2019.107120
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref1
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref1
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref2
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref2
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref2
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref3
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref3
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref4
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref4
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref5
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref5
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref7
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref7
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref8
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref8
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref9
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref9
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref10
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref10
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref11
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref11
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref11
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref41
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref41
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref12
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref12
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref13
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref13
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref13
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref14
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref14
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref14
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref15
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref15
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref15
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref16
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref16
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref16
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref18
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref18
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref18
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref19
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref19
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref19
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref20
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref20
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref21
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref21
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref21
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref22
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref22
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref22
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref24
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref24
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref40
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref40
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref38
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref38
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref43
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref43
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref25


distributed model of arithmetic fact retrieval. Adv. Psychol. 91, 365–409.
Menon, V., 2015. Arithmetic in the child and adult brain. In: Cohen Kadosh, R., Dowker,

A. (Eds.), The Oxford Handbook of Numerical Cognition. Oxford library of psy-
chology, pp. 502–530.

Nieder, A., Dehaene, S., 2009. Representation of number in the brain. Annu. Rev.
Neurosci. 32, 185–208.

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., Dehaene, S., 2004 Oct 28. Tuning curves for
approximate numerosity in the human intraparietal sulcus. Neuron 44 (3), 547–555.

Poldrack, R.A., 2006. Can cognitive processes be inferred from neuroimaging data?
Trends Cognit. Sci. 10 (2), 59–63.

Poldrack, R.A., 2011. Inferring mental states from neuroimaging data: from reverse in-
ference to large-scale decoding. Neuron 72 (5), 692–697.

Prado, J., Mutreja, R., Zhang, H., Mehta, R., Desroches, A.S., Minas, J.E., Booth, J.R.,
2011 Nov. Distinct representations of subtraction and multiplication in the neural
systems for numerosity and language. Human Brain Mapp. 32 (11), 1932–1947.

Prado, J., Lu, J., Liu, L., Dong, Q., Zhou, X., Booth, J.R., 2013. The neural bases of the
multiplication problem-size effect across countries. Front. Hum. Neurosci. 7, 189.

Siegler, R.S., Shrager, J., 1984. Strategy choices in addition and subtraction: how do
children know what to do. Orig. Cognit. Skills 23 (1), 229–293.

Siegler, R.S., 1988. Strategy choice procedures and the development of multiplication
skill. J. Exp. Psychol. Gen. 117 (3), 258.

Šidák, Z., 1967. Rectangular confidence regions for the means of multivariate normal
distributions. J. Am. Stat. Assoc. 62 (318), 626–633.

Slotnick, S.D., 2017 Jul 3. Cluster success: fMRI inferences for spatial extent have ac-
ceptable false-positive rates. Cognit. Neurosci. 8 (3), 150–155.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain. 3-
Dimensional Proportional System: an Approach to Cerebral Imaging. Thieme Medical
Publishers Inc, New York.

Tiberghien, K., Sahan, M.I., De Smedt, B., Fias, W., Lyons, I.M., 2019. Disentangling
neural sources of problem size and interference effects in multiplication. J. Cogn.
Neurosci. 31 (3), 453–467.

Zbrodoff, N.J., Logan, G.D., 2005. What everyone finds: the problem-size effect. In:
Campbell, J.I.D. (Ed.), Handbook of Mathematical Cognition. Psychology Press, New
York, pp. 331–346.

K. tiberghien, et al. Neuropsychologia 132 (2019) 107120

12

http://refhub.elsevier.com/S0028-3932(18)30526-8/sref25
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref26
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref26
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref26
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref27
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref27
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref37
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref37
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref28
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref28
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref29
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref29
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref39
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref39
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref39
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref30
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref30
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref31
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref31
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref32
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref32
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref33
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref33
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref42
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref42
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref34
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref34
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref34
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref35
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref35
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref35
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref36
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref36
http://refhub.elsevier.com/S0028-3932(18)30526-8/sref36

	Distinguishing between cognitive explanations of the problem size effect in mental arithmetic via representational similarity analysis of fMRI data
	Introduction
	Methods
	Participants
	Procedure
	Tasks
	Pre-scan arithmetic task
	Arithmetic task &#x02013; fMRI version

	fMRI data acquisition and preprocessing
	RSA analysis
	Region of interest (ROI) selection
	RSA model


	Results
	Behavioral results
	Traditional approach
	Operand-bin method

	Univariate fMRI results
	Multiplication
	Addition

	Representational similarity analysis (RSA) results
	Post-hoc RSA


	Discussion
	Funding information
	Supplementary data
	References




