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ABSTRACT 

Previous research has shown that high math anxiety (HMA) detrimentally impacts math 
performance; however, limited work has examined how math anxiety may impact math learning. 
The present study drew on our understanding of disparate long-term learning and memory systems 
to provide a framework for how HMA potentially disrupts specific types of math learning. Adult 
participants completed unfamiliar multiplication trials (e.g., 219×4=?) in 2 sessions across 
consecutive days. Repeated Problems enabled retrieval arithmetic learning by repeating the same 
4 problems a total of 72 times each (288 total trials). Unrepeated Problems enabled procedural 
arithmetic learning by repeating a consistent problem structure but without ever repeating a 
specific problem (288 total trials). HMAs showed impaired learning of Unrepeated Problems 
suggesting MA may have disrupted procedural math learning. Conversely, learning of Repeated 
Problems was accelerated in HMAs relative to LMAs, suggesting enhanced retrieval learning. We 
interpret these results within the context of effort-avoidance and well-established learning and 
memory systems, suggesting that HMAs enhance effort on declarative memory mediated retrieval 
learning possibly at the expense of efficiency gains in procedural memory mediated learning of 
computational procedures. This work also suggests that the mechanisms linking math anxiety with 
math performance may differ in important ways from how math anxiety impacts math learning. 
Further, this work highlights the potential value of considering how math anxiety interacts with 
multiple types of math learning.  
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1. INTRODUCTION 

We live in a world that increasingly relies on numerical and mathematical skills. Consequently, 

anxiety about numerical and mathematical situations may be an important challenge for 

individuals to overcome in cultivating and understanding mathematics. Math anxiety refers to 

negative and nervous feelings associated with anticipating or completing mathematical tasks 

(Ashcraft, 2002; Ramirez et al., 2018; Suárez-Pellicioni et al., 2015). Short-term, the impacts of 

high math anxiety (HMA) can be seen in poor performance on arithmetic problems, and lowered 

performance in math coursework relative to peers. Long term, HMA individuals (HMAs) may take 

fewer math classes and are less likely to choose a career that relies on quantitative or numerical 

skills (Ashcraft, 2002; Daker et al., 2021; Hembree, 1990).  

Despite the prevalence of research on the impact of math anxiety on math performance, very little 

work has directly examined whether – and in what manner – math anxiety impacts math learning 

(Dowker et al., 2016). While an examination of math learning to the fullest extent is outside the 

scope of a single empirical paper, the current study examines a subset of math learning which 

involves both multiple cognitive mechanisms, while also allowing for careful experimental 

control: complex mental arithmetic. 

In the context of math anxiety, it is important to distinguish between explanations or mechanisms 

underlying performance and those underlying learning. For example, prior work has firmly 

established that an important explanation for why math anxiety is associated with decrements in 

math performance is a temporary decrement in working memory resources (Friso-van de Bos et 

al., 2013; Ji & Guo, 2023; Raghubar et al., 2010; Ashcraft & Krause, 2007a). However, decrements 

in performance are not the same as decrements in learning. For instance, a musician might 

challenge themself by attempting to play a composition at a tempo that is just outside their current 
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skill level. Doing so may lead to an immediate decrement in performance, but ultimately lead to 

greater learning (relative to continuing to play the piece at the same tempo; Ericsson, 2008). Even 

in cases where decrements in performance and learning are observed in tandem, the mechanism 

underlying poor performance may be different from the mechanism underlying poor learning. For 

instance, sleep deprivation negatively impacts both cognitive performance and learning, but the 

mechanisms underlying each are not always the same (e.g., Curcio et al., 2006; Killgore, 2010). 

For these reasons, it is important not to confuse current explanations of arithmetic performance 

decrements among highly math anxious individuals (HMAs) with explanations of how such 

individuals may or may not learn (or fail to learn) arithmetic relative to their low math anxious 

peers (LMAs). Readers should note this is not meant as a criticism of those explanations of 

performance decrements in math anxiety, as, to our knowledge, they were not intended to serve as 

explanations of learning. 

With respect to arithmetic learning, prior work has differentiated learning math facts from learning 

procedural calculations (Ashcraft, 1992; Delazer, 2003; Dowker, 2023). Importantly, prior 

literature has proposed that different cognitive mechanisms may underscore learning for these 

different types of math (Dowker, 2023; Menon, 2016b). For instance, researchers have suggested 

the declarative memory (DM) system supports recall of math facts, while additional, skills-based 

cognitive systems may contribute to learning of procedural computations (Dowker, 2023; Menon, 

2016b). As such, it is important to consider the possibility that math anxiety may impact different 

types of arithmetic learning in different ways.  

In particular, we are interested in examining whether math anxiety predicts reductions in two types 

of arithmetic learning: direct retrieval of arithmetic facts, and efficiency gains in executing 

procedural computations. The former occurs when a person sees many repetitions of the same 
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problem (Ashcraft, 1983; Zbrodoff & Logan, 1986). For instance, most numerate adults have 

encountered problems like 2×3 many times, and so solve them by directly retrieving the answer 

from memory (Ashcraft, 1992). Adults can of course learn to retrieve less familiar items, such as 

8×319, if they are presented with many repetitions of this same problem – indeed this is the basis 

of quite a few lab-based studies of arithmetic learning (e.g., Zbrodoff & Logan, 1986; Compton & 

Logan, 1991; Delazer et al., 2003; Rickard et al., 2008; Grabner et al., 2009; Battista, 2013). In 

our examination, the first question we ask is whether math anxiety disrupts retrieval learning of 

new arithmetic facts. 

Efficiency gains in executing procedural arithmetic computations occur primarily by practicing 

execution of those procedures (Imbo & Vandierendonck, 2008). Note that this can be differentiated 

from direct retrieval learning by including problems where the structure of the problem is held 

constant, but specific instances (i.e., specific combinations of numbers) are repeated infrequently 

or not at all (e.g., Zbrodoff & Logan, 1986; Compton & Logan, 1991; Delazer et al., 2003; Rickard 

et al., 2008; Grabner et al., 2009; Battista, 2013). Perhaps a familiar example is long division, 

where there is often a common sequence of calculation steps that is largely invariant to the specific 

numerical inputs. Repeated practice with a fixed set of calculation steps can lead to increased 

efficiency in executing them, even if specific problems are repeated infrequently or not at all (e.g., 

Delaney et al., 1998; Imbo & Vandierendonck, 2008; Rickard et al., 2008; Battista, 2013). Note 

that execution of calculations for procedural arithmetic problems does make use of executive 

functioning and working memory capacity to enable mental manipulation of numerical values 

(Dowker, 2023). Importantly, the critical mechanism by which gains in efficiency for procedural 

arithmetic computations occur remains unclear. Thus, the second question we address is whether 
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HMAs experience reduced gains in arithmetic computation efficiency after practicing complex 

arithmetic problems with a fixed structure. 

Why might math anxiety impact one or both of these types of arithmetic learning? Broadly 

speaking, heightened anxiety is associated with a change in how attention is allocated – typically 

toward exogenous (especially threatening) stimuli, and away from endogenous goals and 

representations (Pizzie & Kraemer, 2017; Dusek et al., 1976; Mogg et al., 1990; Moriya & Tanno, 

2009). Similar attentional biases are thought to occur for math anxious individuals, and this bias 

is thought to be a leading cause of the performance decrements seen amongst highly math anxious 

individuals (HMAs) when they are doing math (Beilock, 2008; Ashcraft, 2002; Ramirez et al., 

2018; Li et al., 2023; Daker et al., 2023). But as noted above, performance and learning are not the 

same, so the question at present is whether disruption of endogenous, goal-oriented attentional 

processes due to math anxiety disrupts different facets of arithmetic learning. 

With respect to learning for arithmetic fact-retrieval, endogenous attention is an important 

component of explicit memory formation in the declarative memory (DM) system (Forsberg et al., 

2021; Madore et al., 2020), which plays a crucial role in arithmetic retrieval learning (Dowker, 

2023; Menon, 2016a, 2016b; Cho et al., 2012; Delezar et al., 2019; Grabner et al., 2009; Qin et al., 

2014). Thus, by disrupting DM-mediated mechanisms, math anxiety could lead to disruption of 

arithmetic retrieval learning.  

With respect to learning for computational procedures, one possibility is that math anxiety 

negatively impacts math practice. Here it is important to distinguish between quantity and quality 

of practice. Math anxiety is thought to lead to math avoidance (Dew et al., 1984; Pizzie & Kramer, 

2017; Daker et al., 2021), potentially leading to a reduction in practice quantity. In the current 

study, the amount of practice was equated across all participants, so we are instead interested in 
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how math anxiety might impact practice quality. That is, even if a high and a low math anxious 

person practiced a given arithmetic procedure the same amount, would the HMA person still 

experience reduced efficiency gains? HMAs reduce their effort on more challenging math 

problems (Choe et al., 2019; Jenifer et al., 2022), and procedural computations are generally 

perceived as more effortful than direct retrieval strategies (Ashcraft, 1992; Imbo & 

Vandierendonck, 2008; De Smedt, 2016). Thus, one possibility is that reduced effort by HMAs on 

more challenging problems involving computational procedures could lead to reduced practice 

quality. Because lower input quality can compromise procedural learning in general (Gupta & 

Cohen, 2002, Miller & Shettleworth, 2007), this in turn may lead to reduced efficiency gains in 

arithmetic computations among HMAs. While this proposal is admittedly somewhat speculative, 

the bottom line is that it is important to test whether HMAs show reduced computational, as well 

as retrieval, learning in arithmetic.  

1.3. Current Study 

1.3.1 Hypotheses 
We propose three hypotheses for how math anxiety may impact arithmetic learning: (1) Math 

anxiety impairs arithmetic fact-learning; (2) Math anxiety impairs efficiency gains in a fixed 

computational context (e.g., computing the same type of arithmetic problem, without repeating 

any one specific problem); (3) Math anxiety impairs both.  

1.3.2. Approach 
The present study examined how math anxiety predicts the initial stages of adult learning of 

relatively difficult, multi-digit multiplication problems. These problems were chosen to be 

challenging, and unlikely to have been previously memorized (e.g., 189×4=?), and participants 

were given a 10-second time-limit per problem to encourage the cultivation of more efficient 
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computational procedures. Participants completed an intensive battery (over 600 total trials) of 

multiplication problems divided evenly over two sessions that occurred on two consecutive days. 

All problems were open-ended, requiring participants to provide the answer themselves, and 

feedback in the form of the correct answer was given after each trial. Crucially, problems were 

divided into Repeated Problems, and Unrepeated Problems. Repeated Problems comprised a set 

of four multiplications problems that were each repeated 72 times throughout the experiment, 

enabling participants to rely primarily on declarative memory to recall the answers to these 

problems. Unrepeated Problems were all the same computational class (three-digit × one-digit 

number), but specific problems were never repeated. This meant that direct retrieval of answers to 

specific to Unrepeated Problems was not possible, but efficiency gains in consistent sequences of 

computational steps were possible (and encouraged by the time-limit).  

To systematically address the hypotheses noted above, we investigated four research questions 

addressing different aspects of the impact of math anxiety on arithmetic learning. First, we sought 

to establish whether different Problem Types (Unrepeated Problems vs. Repeated Problems) show 

differential learning trajectories. We did this by examining the overall learning trajectories for each 

Problem Type across the course of the experiment and sought to establish whether learning on 

Unrepeated and Repeated problems indeed reflected differential types of arithmetic learning. 

Second, we tested whether HMAs are capable of each type of arithmetic learning – namely, we 

tested for the presence of learning among HMAs on each type of problem. Third, it is possible that 

HMAs demonstrate evidence of learning for a given problem type, but learning trajectories 

nevertheless differ from their LMA counterparts. To that end, we tested whether learning 

trajectories differed as a function of Math Anxiety for one or both problem types. Fourth, we tested 

whether the potential differential impact of math anxiety on a given type of learning is evident in 
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the short-term (within a single session) or emerges primarily beyond a single testing session (i.e., 

after a 24-hour period). 

On a broader scale, this work has the potential to advance our understanding of whether, in what 

manner, and on what timescale, math anxiety impacts math learning. Our results may also provide 

a bridge between math anxiety, math learning and long-term memory literatures.  

2. METHODS 

2.1. Participants 

Participants were recruited from the student population at Georgetown University (n=84) and other 

adults in the surrounding community (n=5). (Note that results did not meaningfully differ if the 

community participants were omitted.) Participants were first recruited to participate in an online 

study and subsequently invited to participate in two in-lab sessions on consecutive days. 89 

participants completed both in-lab sessions. Of those, survey data from 1 was lost due to a technical 

error; 6 others were dropped from the analysis because insufficient responses did not allow for 

response-times to be computed. Note that exclusion due to insufficient responses was unrelated to 

math anxiety [r=.06, p=.60]. The final analytic N was thus 82 (58 female, mean age: 22.45yrs, 

range: 18-49yrs).  

2.2. Procedure 

The initial online study was part of a larger dataset comprising a battery of questionnaires and 

several online tasks collected via Qualtrics. Task-order was counterbalanced across participants. 

Of primary relevance here are the measures of math anxiety, general trait anxiety, and the basic 

demographics data. Participants were subsequently invited to participate in the in-lab portion of 

the study. The in-lab portion consisted of two testing sessions over two consecutive days. The in-
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lab portion involved completion of an intensive multiplication task (see below for details). 

Electrodermal activity was recorded throughout both sessions, though here we focus solely on 

behavioral indicators of learning and their relation to math anxiety. Each lab session took 

approximately 90 minutes on average to complete. All procedures were approved by the University 

Institutional Review Board, and participants provided written consent to be a part of the study.   

2.2.1 Transparency and Openness 

We report how we determined our sample size, all data exclusions, manipulations, and measures. 

This study’s design and analyses were not preregistered. Analyses were conducted using SPSS 

software Version 29. All data have been made publicly available at the APA’s Open Science 

Framework (OSF) repository and can be accessed at the following link: 

https://osf.io/zc9nf/?view_only=2ef79dd4cbe64421b9f6447daa6f80ff. 

2.3. Measures 

2.3.1. Math Anxiety 

Math anxiety was measured using the 25-item shortened math anxiety rating scale (SMARS; 

Alexander & Martray, 1989). Ratings on this scale range between 0 and 100. The mean rating in 

the current dataset was 35.2, with a standard deviation of 17.3.  

2.3.2. General Trait Anxiety 

General trait anxiety was measured using the 20-item trait portion of the state-trait anxiety index 

(TAI; Spielberger et al., 1970). Ratings on this scale range from 20 to 80. The mean rating in the 

current dataset was 47.1, with a standard deviation of 4.4. 
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Figure	1	

 

Figure 1 Notes. Figure 1 shows the experimental paradigm for a single session. On the left is a 
depiction of the type of randomization used for problem type presentation. Along the bottom we 
display the sectioning of the 12 Blocks within each session. Each Block contained 27 
multiplication trials and lasted about 5 to 10 minutes. Participants were given short breaks in 
between Blocks. On the diagonal is a sample of the screen shown during each trial illustrating the 
initial fixation, the problem presentation and solving, feedback, and the subsequent return to 
fixation. 

 

2.3.3. Multiplication Task 

The multiplication task was presented via E-Prime 3.0 and displayed on a 1280×1024 standard 

Dell flat screen monitor. Multiplication problems were open-ended and required participants to 

type their answers via the number pad on a standard keyboard. Problems were designed to be 

moderately challenging and relatively unfamiliar. Problems consisted of two multiplicands 

presented horizontally in the form a × b = __. The left multiplicand (a) was always three-digits, 

ranging from 101-399. The second multiplicand (b) was a single-digit: 2, 3, 4, 6, 7, 8, 9. To equate 

the number of required key presses across problems, the solutions to all problems were three-digit 

integers (problems with products > 999 were excluded). The participant’s answer appeared to the 
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right of the equals sign as they typed their response. Stimuli were centered on the screen with 

problem text in 36pt Arial font. Each day, prior to the start of the main experiment, participants 

completed 5 practice problems. Practice problems were not repeated elsewhere in the experiment. 

After a given trial appeared on the screen, participants had 10 seconds to complete their response. 

This 10-second response window was designed to create a certain amount of time-pressure and 

encourage learning, either via acquisition of more efficient strategies, such as memorization, or 

more efficient overall calculation processing. Responses were typed via the number pad and 

confirmed by pressing the Enter key (also on the number pad). Participants were allowed to correct 

their answers prior to pressing Enter, by using the Backspace key.  

After each trial (either after pressing enter or after the 10-second time-limit expired), any typed 

response was scored, and participants received feedback. Feedback was either “Correct”, 

“Incorrect”, or “No Response Detected” (the latter occurred if participants failed to provide a 

response within the time limit). Font color for feedback was blue, red, or orange, respectively. 

Below the feedback text, was the following text in white: “The correct answer is:”, followed by 

the complete problem, including the correct answer (e.g., 189 × 4=756). The feedback screen was 

presented for 2 seconds, followed by an inter-trial fixation period of 3 seconds, after which the 

next trial began. The experiment was paused roughly every 5-10 minutes, and participants were 

given the option to take a short break. 

Participants completed a total of 648 problems. These were divided evenly across two sessions 

that occurred on two consecutive days. Hence, participants completed 324 problems on Day 1 and 

324 problems on Day 2. The 648 total problems were divided into 288 Repeated Problems, and 

360 Unrepeated Problems. Note that the larger (three-digit) multiplicand in 72 of the 360 

Unrepeated Problems involved a zero in the ones place (e.g., 280, 160, etc.). Due to concerns that 
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this type of problem might afford qualitatively different types of strategies, they were omitted from 

analysis. Doing so also equalized the number of Repeated and Unrepeated Problems at 288 each. 

An equal number of each problem type was presented in each session (144 of each type on each 

day). Furthermore, problems were pseudo randomly presented so that, at any given point in a 

session, a participant would have completed roughly an equal number of Repeated and Unrepeated 

Problems (after excluding the 72 problems ending in a zero).  

2.3.3.1. Repeated Problems 

Repeated problems comprised the same four problems that were repeated throughout the 

experiment, including across both testing days. The four problems were 104 × 7, 142 × 3, 139 × 

4, and 371 × 2. Each problem was repeated a total of 72 times across both sessions (36 times per 

session), which together comprised the 288 Repeated Problems participants saw in total. Note that 

these problems were chosen to be broadly representative of the types of problems (in terms of 

multiplicand place-value pairings) participants saw for the Unrepeated Problems.  

Repeated Problems were designed so that learning – more specifically, accelerated learning 

beyond what is seen for Unrepeated Problems – on these problems would most likely be driven by 

direct memory retrieval. Feedback in the form of the correct answer was provided after each 

problem. Thus, by repeating a problem, one has the opportunity to accelerate learning by directly 

recalling the answer on subsequent problems – be that the answer one successfully produced 

oneself, or the answer provided via feedback (or both). Repeated Problems were randomly 

interspersed among a large number of Unrepeated Problems, meaning that participants could not 

simply memorize a single response routine.  
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2.3.3.2. Unrepeated Problems 

Unrepeated Problems were never repeated throughout the experiment. Thus, all 360 Unrepeated 

Problems (288 of which were analyzed here) were presented exactly once. Unrepeated Problems 

were divided into two equal sets, and which set was presented on which Day 1 or Day 2 was 

counterbalanced across participants.  

Unrepeated Problems were designed so that improved performance on this class of problems 

would most likely be driven by efficiency gains in computational procedures. No problem in this 

set was ever repeated, so participants could not rely on memorization of specific exemplars. 

However, the structure of the problem was held constant, allowing for consistent deployment of a 

small set of calculation procedures. Taken together, this meant that, if learning performance 

improvements over time were to occur for these problems, it would likely be due to improvements 

in the efficiency of the execution of that set of calculation procedures.  

Note that, due to a technical error, the same set of Unrepeated Problems was accidentally presented 

on both days to 3 participants. Hence, those 3 participants in effect saw only 180 unique 

Unrepeated Problems which were presented exactly twice – once on each day. Including or 

excluding these participants did not affect the results. Two repetitions, when compared with 72 

total repetitions of each Repeated Problem, is an order of magnitude less. On the other hand, one 

might expect the repetition across testing days could bias the effect of Day on learning trajectories 

for Unrepeated Problems, but this effect was in fact unchanged whether the 3 participants were 

excluded or not. Hence, for the sake of retaining as much data as possible, these 3 participants are 

included in subsequent analyses. 
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2.4. Analysis Framework 

2.4.1. Z-Scores and Speed-Accuracy Trade-Offs 

Our two measures of performance were accuracy and response time (RT). However, our focus in 

this study was on learning, which we quantified as changes in these performance variables. In 

particular, we were interested in directly contrasting changes as a function of Problem Type and 

math anxiety, which requires one use the same base variable (e.g., accuracy vs. accuracy, RT vs. 

RT). The issue is that speed-accuracy trade-offs are expected to differ across the two types of 

problems. For Repeated Problems, participants are expected to reach ceiling performance in terms 

of accuracy relatively quickly, at which point subsequent gains in processing would be more likely 

to be reflected by changes in RT. For Unrepeated Problems, no such switch in relative importance 

is expected. Thus, comparing learning in terms of either RT or accuracy could lead to inflated or 

deflated estimates of relative learning, depending on the measure chosen. Moreover, for Repeated 

Problems, precisely when the potential switch from changes in accuracy to changes in RT occurs 

is likely to differ across participants, which has implications for associating learning with an 

individual differences factor like math anxiety. 

To avoid introducing these confounds into our analyses, we used a combined variable approach, 

in which we computed a composite measure of RT and accuracy. This implicitly accounts for 

potential trade-offs in relative gains in each of the two variables, resulting in an index of overall 

learning that is more directly comparable across Repeated and Unrepeated conditions. 

Furthermore, this approach halves the number of statistical comparisons needed, and reduces the 

chance that one is ‘cherry picking’ the outcome measure that is most convenient for one’s 

hypotheses. Finally, the approach also implicitly accounts for individual variation in speed-

accuracy trade-offs that might arise from idiosyncratic strategy selection. 
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To combine RT and accuracy, we used a z-score approach. We avoided inverse efficiency 

(Townsend & Ashby, 1983) as this weights accuracy non-linearly; we also opted not to use the 

Combined Performance (CP) metric introduced by Lyons et al. (2014), as that approach is more 

optimal in forced-choice situations, whereas here responses were open-ended. To compute z-

scores, trials for each of the Problem Types were binned across 6 Timepoints as noted in the section 

on Assessing Learning Trajectories above. For each participant, average RT and error-rate (ER, % 

incorrect) was calculated for each Problem Type at each Timepoint. Z-scores were then computed 

as 𝑧! = −𝑚𝑒𝑎𝑛(𝑧(𝑅𝑇!), 𝑧(𝐸𝑅!)/, where 𝑧(𝑅𝑇!) =
"#!$"#"

"##
 and 𝑧(𝐸𝑅!) =

%"!$%""
%"#

. The i 

subscript indicates the value for a given participant for a given problem type for a given Timepoint. 

The M subscript indicates the grand mean across all participants, Problem Types and Timepoints. 

The s subscript indicates overall standard deviation across all participants, Problem Types and 

Timepoints. We used error-rates instead of accuracy because the former is in conceptually the 

same direction as RT (a lower value indicates ‘better’ performance). Z-scores were multiplied by 

-1 to aid in interpretation, such that a higher z-score indicated better overall performance.  

2.4.2. Invalid Trials and Triaging Participants 

To incentivize performance improvements, trials had a 10-second timeout; however, on trials 

where a timeout occurred, RT cannot be calculated, and it is unclear what this means in terms of 

accuracy. Hence, these trials were excluded from analysis. Some participants performed overall 

very poorly on the task, which often manifested as a very high number of timeout trials. Hence, 

we sought to triage such participants using a 75/25 rule: to be included in the sample, a given 

participant needed at least 75% valid (non-time-out) trials overall and at least 25% valid trials in 

each cell (Type × Timepoint). Six participants failed to meet one or both criteria and were excluded 
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from further analysis. Neither the total number of invalid trials nor the likelihood of being excluded 

was significantly related to math anxiety (ps > .05).  

2.4.3. Assessing Learning Trajectories 

To assess learning trajectories for each of the Problem Types (Questions 1-3), we divided trials so 

that each Day contains 3 Timepoints, for a total of 6 Timepoints across the experiment. Note that 

this approach also allowed us to test for short-term learning across 3 Timepoints within a Day vs 

consolidation learning between daily Timepoints (Question 4). Each Timepoint comprised 48 trials 

of each Problem Type (Repeated, Unrepeated), and included 12 instances of each specific problem 

within the Repeated Problem set. In this way, we aimed to balance the capacity of our metrics to 

reasonably test each study question by estimating performance on the different problem types at 

each Timepoint. We used within-subjects contrast-effects to evaluate overall learning trajectories 

across timepoints. Note that contrast effects fit differences across levels in a given factor (e.g., the 

6 levels in the Timepoint factor) to a specific mathematical function. Standard effects, conversely, 

detect only simple differences between levels, regardless of overall pattern.  

2.4.4. Modeling Math Anxiety 

Math anxiety is traditionally treated as a continuous measure (Dowker et al., 2016), though there 

is considerable precedent for comparing separate ‘high’ and ‘low’ math anxiety groups (e.g., 

Supekar et al., 2015; Passolunghi et al., 2020; Schaeffer et al., 2021; Jenifer et al., 2022; see also 

Ashcraft et al., 2007b). The argument against using groups is that group cutoffs are arbitrary, and 

this division often reduces statistical power. On the other hand, comparing groups is often 

conceptually easier to communicate, visualize, and understand. Also, Question 2 in the present 

study tests for learning in those classified as high math anxiety, necessitating group classification.  
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In the current sample, we first checked whether the association between math anxiety and overall 

performance varied as a function of whether math anxiety was treated continuously or in a group-

based manner (using a median split). The median SMARS score in the sample was 33.5. Those 

with SMARS scores ≥ 34 were classified as high in math anxiety (HMA, n=41). Those with 

SMARS scores ≤ 33 were classified as low in math anxiety (LMA, n=41). For Repeated Problems, 

modeling math anxiety continuously was slightly stronger (Continuous: r=-.30, Group: r=-.26); 

for Unrepeated Problems, modeling math anxiety group-wise was slightly stronger (Continuous: 

r=-.33, Group: r=-.36); the two approaches were nearly identical with respect to overall 

performance (Continuous r=-.34, Group: r=-.34) (all ps<.05). Furthermore, within each group, we 

did not see a consistent association between continuous math anxiety and performance (LMA 

group: r=+.06, HMA group: r=-.24). Together, these preliminary results suggest (1) the statistical 

benefit of modeling MA continuously was not present in the current dataset, and (2) it may even 

be the case that there were qualitative differences between high and low math anxiety groups, 

making continuous treatment of MA potentially problematic for the current dataset. There is 

precedent for such qualitative differences elsewhere in the literature (e.g., Lyons & Beilock, 2012). 

Regardless, given that the potential benefits of modeling MA continuously in the present dataset 

did not seem to outweigh the benefits of modeling it group-wise, we opted to model MA in terms 

of high and low groups. Perhaps unsurprisingly given the above, none of the main conclusions of 

the paper are substantially altered if one were to choose to model MA continuously. 

2.4.5. Accounting for General Anxiety 

To establish specificity of math anxiety effects, it is customary to control for general anxiety, 

which we measured here using the trait portion (TAI) of the STAI. In the current dataset, we found 

no significant relation between math anxiety and general anxiety (r=.16, p=.150) or between 
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general anxiety and overall performance (r=.17, p=.123). Further, general anxiety was not 

associated with any learning effects (all ps>.05; to estimate this, the ANOVAs from the results 

section were re-run substituting general anxiety for math anxiety, and by checking relevant 

interaction terms). Finally, results remained unchanged even after adjusting for general anxiety. 

Hence, in the current dataset, it does not seem necessary to control for general anxiety to establish 

specificity of math anxiety effects, and so for the sake of model simplicity, the main analyses omit 

trait anxiety as an additional factor. 

3. RESULTS 

3.1. Question 1: Do the different Problem Types show differential learning trajectories? 

The first goal of the study was to establish whether in this paradigm, we see evidence of a reliance 

on differential learning and memory mechanisms for each Problem Type. We tested for learning 

on Unrepeated Problems (evidence for learning of computational procedures), and for learning on 

Repeated Problems (evidence for learning of direct retrieval). Figure 2 shows mean performance 

at each Timepoint for the two Problem Types. As this first research question does not concern 

math anxiety, the math anxiety group variable was omitted, and we consider all subjects together.  

Note that the first timepoint in Figure 2 makes it appear as though there was a pre-existing 

difference between Repeated and Unrepeated Problems. For statistical estimation purposes 

Timepoint 1 in fact includes the first 48 trials of each problem type (in particular, 12 repetitions of 

each of the repeated problems), so some degree of learning may have already occurred within 

Timepoint 1. Thus, if we isolated accuracy on the very first instance that participants saw each of 

the four (soon-to-be) Repeated Problems, as well as accuracy on the first four Unrepeated 

Problems, there was no difference in accuracy between the problem types [Repeated: M=56%, 
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se=2.97%; Unrepeated: M=55%, se=2.92%; t(81)= -0.21, p=.84]. Recall that responses were open-

ended (i.e., not verification), so the low accuracy rates on these first four problems are still well 

above chance. More to the point, there was no reliable difference between Repeated and 

Unrepeated problems, at least at the very outset of the experiment. We next turn to examining 

variation in learning trajectories.  

3.1.1. Log versus Linear Learning Trajectories 

As illustrated in Figure 2, learning trajectories for both Problem Types was better fit by a log as 

opposed to a linear function of Timepoint at the group average level. A more quantitative approach 

confirmed this by using a one-way, within-subjects analyses of variance (ANOVA), and by 

examining the within-subjects contrast-effect, which provided the best estimate of overall learning 

trajectories, across the 6 Timepoints. We ran two ANOVAs for each Problem Type, modeling the 

contrast-effect of Timepoint either linearly and or a natural log function. The contrast-effect F-

statistics for Timepoint from those models were as follows: Repeated Problems (Linear): 

F=608.55, Repeated Problems (Log): F=630.40; Unrepeated Problems (Linear): F=159.84, 

Unrepeated Problems (Log): F=215.69 (all dfs: 1, 81; all ps<.001).  For both Problem Types, the 

contrast effect of Timepoint was better fit by a log function as indicated by higher F-statistics. 

Also of interest is the difference between learning trajectories on the two Problem Types. We 

checked whether the contrast effect for the interaction between Problem Type and Timepoint was 

better fit by a log, relative to a linear function. The contrast effect for the interaction term showed 

a better fit when Timepoint was modeled in a log (F=237.03) vs a linear manner (F=224.69). In 

sum, overall learning trajectories for both Repeated and Unrepeated Problems, as well as the 

difference between these two trajectories, were all better fit by a log function. We therefore model 

Timepoint as ln(Timepoint) moving forward.  
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3.1.2. Final Model 

The final model for this section was 2(Type: Repeated, Unrepeated) × 6[Timepoint: ln(1-6)]. 

Within subjects’ contrast effects are reported in-text, while full ANOVA results are in Appendix 

A. The main effect of Type was significant [F(1,81)=875.04, p=4E-45, d=0.96], such that 

Repeated performance was overall better than Unrepeated performance. The log contrast effect of 

Timepoint was significant [ln(Timepoint): F(1,81)=707.01, p=9E-42, d=0.95]. Substantial 

learning thus occurred overall. However, learning trajectories for the two different problem types 

were not equal, as evidenced by a significant interaction contrast-effect [Type × ln(Timepoint): 

F(1,81)=237.03, p=9E-26, d=0.86]. Significant learning was observed for Unrepeated Problems 

[ln(Timepoint): F(1,81)=215.69, p=2E-24, d=0.85], but learning was significantly accelerated for 

Repeated Problems [ln(Timepoint): F(1,81)=630.39, p=6E-40, d=0.94].  

We thus show differential learning trajectories for the two problem types. We also find evidence 

that these different trajectories may be underlain by separate learning mechanisms: While overall 

performance across Problem Types was highly correlated [r(80)=.679, p=2E-12], learning 

trajectories for the two Problem Types were not [r(80)=.133, p=.234]. Furthermore, Unrepeated 

Problems showed evidence of learning in a context where problem structure was held constant, 

but without any specific problem ever being repeated. Repeated problems showed significantly 

accelerated learning in a context where a small subset of items was repeated. Taking the above 

together, it seems reasonable to conclude that learning on Unrepeated Problems and Repeated 

Problems were underlain by distinct memory mechanisms (We would of course not rule out some 

overlapping contribution of the two memory systems, though the lack of correlation between 

learning trajectories does speak against this to a degree.) In the next sections, we turn to the 
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question of whether and how math anxiety potentially impacts math learning in each of these 

memory systems.  

Figure 2 

 

Figure 2 Caption: Figure 2 shows performance as a function of Problem Type and 
Timepoint. Performance is shown as z-scores. A higher z-score indicates better 
performance. Repeated Problems are in red; Unrepeated Problems are in blue. Learning is 
operationalized as consistent changes in performance and analyzed as log-contrast effects. 
To represent log-contrast effects, bold lines show fitted log functions: ln(Timepoint), along 
with R² values for the fitted lines. Shaded lines with error-bars (standard-errors) are actual 
timepoint means.  
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3.2. Question 2: Do HMAs have intact learning and memory mechanisms for arithmetic? 

Here, we tested whether HMAs have fundamental deficits in one or both types of arithmetic 

learning (retrieval or procedural). Similar to Question 1, we tested for the existence of significant 

learning trajectories for each problem type, but here we focused exclusively on the HMA group 

(n=41). Within subjects’ contrast effects are reported in-text, while full ANOVA results are in 

Appendix Table B-1 (LMA results are given in Table B-2 for completeness). 

First, we checked for intact learning of computational procedures by testing for the presence of a 

significant learning trajectory among HMAs on Unrepeated Problems. We tested for the presence 

of a log-contrast effect across the 6 Timepoints. This contrast effect was indeed significant 

[ln(Timepoint): F(1,40)=90.33, p=8E-12, d=0.83], indicating learning mechanisms for arithmetic 

computational procedures remain intact among HMAs when learning math. 

Second, we checked for intact retrieval learning by testing for the presence of an accelerated 

learning trajectory for Repeated relative to Unrepeated Problems. The log-contrast effect for 

Repeated Problems among HMAs was significant [ln(Timepoint): F(1,40)=345.11, p=2E-21, 

d=0.95]; moreover, this effect was significantly stronger than the effect for Unrepeated Problems 

above [Type × ln(Timepoint): F(1,40)=199.08, p=4E-17, d=0.91]. Arithmetic retrieval learning 

mechanisms thus appear to remain intact for HMAs when learning math.  

3.3. Question 3: Do learning trajectories differ as a function of Math Anxiety? 

While the previous section does not identify a fundamental deficit in retrieval or procedural 

arithmetic learning in HMAs, it is still possible that one or more mechanisms may be partially 

disrupted, preserved, or even enhanced among HMAs relative to their LMA counterparts. Here we 

test for these subtler differences by contrasting learning trajectories between HMAs and LMAs. 
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Figure 3 shows learning trajectories for each Problem Type and Math Anxiety Group. Within 

subjects’ contrast effects (see Methods) are reported in-text, while full ANOVA results are in 

Appendices B and C. 

The previous sections established a difference in learning trajectories as a function of Problem 

Type. Thus, in this section, we first tested whether this difference in learning trajectories in turn 

differed as a function of math anxiety. The three-way log-contrast effect was indeed significant 

[MA × Type × ln(Timepoint): F(1,80)=11.92, p=9E-04, d=0.36; Table C-1]. One way to 

understand this result is from the perspective of each Problem Type. While HMAs showed greater 

learning on Repeated Problems [MA × ln(Timepoint): F(1,80)=5.36, p=.023, d=0.25; Table C-2], 

LMAs showed marginally greater learning on Unrepeated Problems [MA × ln(Timepoint): 

F(1,80)=3.67, p=.059, d=0.21; Table C-3]. The differential learning trajectories in Figure 3 suggest 

different implications for MA-related arithmetic-learning deficits. There is an initial performance 

deficit for HMAs on both Problem Types. However, for Repeated Problems, due to accelerated 

learning, this performance deficit diminishes over time; for Unrepeated Problems, due to 

decelerated learning, the performance deficit increases with time. 
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Figure 3 

 

Figure 3 Caption: Figure 3 shows performance as a function of Problem Type and 
Timepoint, separated into low (LMA) and high math anxious (HMA) groups. Performance 
is shown as z-scores. A higher z-score indicates better overall performance. LMAs are 
shown with solid lines; HMAs are shown with hollow lines. Repeated Problems are in red; 
Unrepeated Problems are in blue. Learning is operationalized as consistent changes in 
performance and analyzed as log-contrast effects. Bold lines show fitted log-contrast-effect 
functions: ln(Timepoint), along with R² values for the fitted lines. Faded lines (both solid 
and hollow) with error-bars (standard-errors) are actual timepoint means.  

Another way to think about the three-way contrast effect is that HMAs show accelerated learning 

on Repeated Problems (relative to Unrepeated Problems) to a greater extent than their LMA peers. 

This is reflected in the fact that HMAs showed a stronger Type × ln(Timepoint) effect 

[F(1,40)=199.08, p=4E-17, d=0.91; Table B-1] than did LMAs [F(1,40)=82.99, p=3E-11, d=0.82; 
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Table B-2]. Earlier, we interpreted accelerated learning on Repeated relative to Unrepeated 

problems as evidence of retrieval learning. Taken together with the above paragraph, these results 

suggest that MA disrupts procedural learning, but potentially enhances retrieval learning.  

As a final note, after averaging over Problem Type, there was no significant difference in overall 

learning between HMAs and LMAs [MA × ln(Timepoint):  F(1,80)=0.74, p=.391, d=0.10; Table 

C-1]. In other words, HMAs showed no evidence of differential learning relative LMAs when 

considering the arithmetic task as a whole. However, as we saw from above, this masks divergent 

learning trajectories as a function of Problem Type. This in turn highlights the importance of 

considering different types of learning and memory mechanisms when examining the impact of 

math anxiety on arithmetic learning. In sum, the evidence reviewed above supports Hypothesis 

(2): Math anxiety impairs learning in the form of enhanced arithmetic computational efficiency. 

Notably, the evidence contradicts Hypothesis (1): Math anxiety impairs learning of arithmetic 

facts (which thus also contradicts Hypothesis 3). 

3.4. Question 4: Do differential Math Anxiety learning trajectories emerge in the short-term, 

or after 24 hours? 

Having established the presence of differential learning trajectories by Problem Type between 

Math Anxiety groups, we looked to identify the time at which these differences emerge between 

groups. First, we tested whether trajectories diverge primarily within a given testing session. We 

operationalized this as learning within a testing Day. Second, we tested whether learning 

trajectories diverge in the (modestly) longer-term, possibly after memory consolidation processes 

have begun to occur. We operationalized this as learning across the two testing Days. 
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The current model was 2(MA: LMA, HMA) × 2(Type: Repeated, Unrepeated) × 2(Day: 1, 2) × 

3(Timepoint: ln(1-3)). Note that in the current model there are only 3 levels to the factor Timepoint, 

because Timepoint here averages across Days (Timepoints 1 and 4 are averaged, as are 2 and 5, 

and 3 and 6).  

Of primary interest here are two effects: (1) The MA × Type × ln(Timepoint) interaction contrast 

effect quantifies differential learning as a function of MA and Problem Type across Timepoints 

(within a given testing session), ignoring the influence of Day. (2) The MA × Type × Day 

interaction effect quantifies differential learning as a function of MA and Problem Type across 

Days (between testing sessions), ignoring the influence of specific Timepoints within those Days. 

Results showed, at best, limited support for divergent learning trajectories within a given testing 

session [MA × Type × ln(Timepoint): F(1,80)=2.30, p=.133, d=0.17], but robust support for 

divergent learning trajectories across days [MA × Type × Day: F(1,80)=10.66, p=.002, d=0.34]. 

Note that the four-way interaction did not approach significance (F<1), indicating these two effects 

did not interact with one another. In sum, it appears that the differential Math Anxiety learning 

trajectories seen for the different Problem Types in Question 3 (Figure 3) did not fully emerge 

until the second of two testing days, which may suggest that the impact of Math Anxiety on 

retrieval and procedural learning may be driven by memory mechanisms that unfold over a 

timeframe that exceeds a single-session experiment.  
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4. DISCUSSION 

Substantial work has demonstrated that high math anxiety is detrimental to math performance 

(Ashcraft & Ridley, 2005; Daker et al., 2021), which may give rise to the intuition that math 

anxiety is also detrimental to math learning. However, there is a lack of direct evidence for this 

intuition, and the limited evidence which does exist relies on longitudinal correlation studies 

identifying associations between math anxiety and outcome measures of previously learned math 

material. At the same time, there is a dearth of theoretical explanations in the literature outlining 

precisely how math anxiety might affect the process of math learning specifically. Taking an initial 

step towards filling this gap, the present study examined how math anxiety relates to two different 

types of arithmetic learning thought to be underlain by disparate learning mechanisms (Dowker, 

2023; Menon, 2016b). Our results provide some of the first direct experimental evidence that math 

anxiety relates to impaired math learning – specifically, reduction of efficiency gains when 

practicing arithmetic calculation procedures. This result is broadly consistent with the notion that 

HMAs avoid effortful math, extending it to show that this avoidance may have negative 

implications for learning. Importantly, our results also show that math anxiety is not predictive of 

poor math learning across the board, as HMAs show preserved or even enhanced arithmetic fact-

retrieval learning. This latter result underscores the need to consider how math anxiety impacts 

different types of math learning. In the discussion that follows, we provide a tentative 

interpretation of these results couched in literature on long-established learning and memory 

systems. The current work thus has the potential to provide a bridge-point between the math 

anxiety, math learning and long-term memory literatures.  
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4.1. Summary of Research Questions 

Question 1. We operationalized the distinction between types of learning by examining how math 

anxiety interacted with learning of Repeated vs. Unrepeated Problems. Repeated Problems were 

designed to reflect retrieval learning, allowing participants to engage in rote memorization of the 

repeated arithmetic problems. Unrepeated Problems were designed to reflect gains in arithmetic 

calculation efficiency. To provide support for this operationalization of Problem Types (Question 

1), we first sought to verify that different Problem Types (Repeated Problems vs. Unrepeated 

Problems) showed differential learning trajectories (regardless of math anxiety level). Indeed, they 

did (see Fig. 1), and while performance on the two problem types were highly related, learning 

trajectories were unrelated to one another. Specifically, we found significant learning for 

Unrepeated Problems, despite repetition only of problem structure (and not of individual items), 

providing evidence of efficiency gains in arithmetic calculation procedures. When problems were 

repeated (Repeated Problems), learning was significantly accelerated, providing evidence for the 

involvement of retrieval-based arithmetic learning. 

Question 2. We next assessed whether HMAs’ (retrieval and procedural) learning and memory 

mechanisms remained intact for math (Question 2). Specifically, we tested for the presence of 

significant learning trajectories in HMAs for each Problem Type. HMAs indeed demonstrated 

significant positive learning trajectories for both problem types, indicating that both retrieval and 

procedural learning mechanisms appear to remain intact for HMAs while learning math (Figure 3, 

hollow lines). However, demonstrating that neither type of arithmetic learning is completely 

compromised is not the same thing as demonstrating that they are not impaired (relative to LMAs). 
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Question 3. We thus directly compared HMA and LMA learning trajectories for each Problem 

Type (Question 3). HMAs showed an initial performance deficit compared to LMAs in both 

problem types (Timepoint 1, Figure 3); however, this deficit diminished over time for Repeated 

Problems, and increased over time for Unrepeated Problems (learning trajectories in Figure 3). 

This result, supported by the significant three-way interaction (MA × Type × ln(Timepoint); Table 

C-1), indicates that the impact of math anxiety on math learning depends on the type of learning 

involved. Overall, retrieval learning was accelerated, and this acceleration was significantly 

greater for HMAs (compare Type × ln(Timepoint) contrast effects in Tables B1 and B2). This 

greater acceleration was in turn driven by significantly accentuated retrieval learning for HMAs 

(Table C-2) and (marginally) attenuated procedural learning for HMAs (Table C-3). Put simply, 

HMAs were able to learn Repeated Problems (arithmetic retrieval) better than LMAs but learned 

Unrepeated Problems (arithmetic procedures) worse than LMAs. These results from Question 3 

provide support for the second hypothesis put forth in the Introduction that high math anxiety may 

reduce quality of math practice, resulting in impaired efficiency gains on arithmetic calculation 

procedures. However, our results also argue directly against our first hypothesis that high math 

anxiety impairs learning of arithmetic facts. Consequently, results also refute our third hypothesis 

that math anxiety concurrently impairs retrieval and procedural arithmetic learning.  

Question 4. Lastly, we sought to determine whether the differential effect of math anxiety on 

different types of arithmetic learning manifested in the short-term (within a single session) or after 

24 hours (between two testing days; Question 4). Results indicated that differential trajectories 

primarily emerged between, as opposed to within, testing days, as evidenced by a stronger MA × 

Type × Day effect than an MA × Type × Time effect (Table D-1). Put simply, math anxiety’s 

differential impact on retrieval and procedural arithmetic learning is most evident after a 24 hour, 
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overnight, period. One potential driver of this effect may be the process of overnight consolidation, 

which is the neurocognitive process by which new memories are stabilized (Ullman & Lovelett, 

2018; Marshall & Born, 2007). Consolidation is generally considered to improve learning in long-

term memory systems (Mednick et al., 2011; Rasch and Born, 2013; Ullman, 2016). However, 

research indicates that there may be differential effects of overnight consolidation on different 

types of learning, with factors such as stress, sleep quality, and the content of learned materials 

affecting subsequent memory system function (Stamm et al., 2014; Diekelmann et al., 2009; 

Ullman & Lovelett, 2018). Consolidation processes are complex, and our results indicate that, 

particular to math learning, 24-hour spaced sessions which allow for overnight consolidation may 

produce differential effects on retrieval vs procedural arithmetic learning as a function of math 

anxiety. Future studies investigating the impact of math anxiety on math learning may need to 

examine learning over more than one session, and across multiple days to observe similar results. 

4.2. Interpretation of Results in the Context of Effort and Long-Term Memory Systems 
4.2.1. Long-Term Memory Systems and Arithmetic Learning 
As noted in the Introduction, previous researchers have suggested that the two types of arithmetic 

learning considered here – retrieval vs procedural – may rely on disparate long-term learning and 

memory mechanisms (Dowker, 2023; Menon, 2016b). In particular, the declarative memory (DM) 

system may support arithmetic fact-retrieval, while a skills-based system – like procedural memory 

(PM) - may support procedural computations. 

The DM system is optimally suited for acquisition of both arbitrary facts, but also for extraction 

of the types of semantic associations that are thought to underly much of arithmetic understanding 

(Ashcraft, 1983, 1982; Campbell, 2015). Moreover, brain structures that support DM have been 

implicated in arithmetic fact-retrieval learning (Cho et al., 2012; Delezar et al., 2019; Grabner et 

al., 2009; Qin et al., 2014; Menon, 2016b). It is thus not unreasonable to imagine that retrieval-
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based learning of Repeated Problems in the current context was at least partially mediated by DM 

learning mechanisms.  

Conversely, the PM system is optimally suited for identifying and accelerating processing of high-

frequency sequences (Ferbinteanu, 2019; Seger, 2006). Multi-step arithmetic in particular involves 

concatenation of discrete calculation steps, often in a specific sequential order (Ashcraft, 1992). 

Performance improvements in arithmetic (e.g., faster response times) can arise from increasing the 

efficiency of these specific calculation sequences (Compton & Logan, 1991; Imbo & 

Vandierendonck, 2008; Thevenot et al., 2007, 2020), even when participants are sometimes unable 

to identify such patterns (Rosenbaum, 2001; Wenger & Carlson, 1996; Seger, 2006; Menon, 

2016b; Barrouillet & Thevenot, 2013). Indeed, there is mounting evidence that previously assumed 

hallmarks of arithmetic retrieval, such as size effects, may at least partially reflect efficiency gains 

in calculation procedures (Thevenot et al., 2007, 2020; Barrouillet & Thevenot, 2013). Work at 

the neural level has shown that PM brain regions are parametrically modulated by ‘classic’ 

arithmetic effects, including problem-size effects as well as memory interference effects 

(Tiberghien et al., 2019). Furthermore, Fias et al. (2021) found – in an alphabet arithmetic learning 

context – that it was primarily PM regions that showed activation curves consistent with learning 

and improvement of efficiency for calculation procedures (but not retrieval learning). In the current 

study, given that Unrepeated Problems comprised a highly consistent structure, but without 

repetition of specific problems, we suggest that learning – in the form of efficiency gains in 

executing computational procedures – on these problems was at least partially mediated by PM 

learning mechanisms. 

In sum, prior theoretical and empirical work – at both the behavioral and neural level – supports 

the idea that the DM system contributes to arithmetic retrieval learning, and the PM system 
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contributes to efficiency gains in executing arithmetic calculation procedures. In turn, though 

admittedly speculative, we suggest that learning on Repeated Problems may have been mediated 

by DM systems and that on Unrepeated Problems by PM systems.  

4.2.2. Math Anxiety, Arithmetic Learning, and Memory Systems – The Role of Effort 
In formulating our first hypothesis, we assumed that math anxiety would be a strictly disruptive 

force with respect to endogenous attention and would thus compromise retrieval learning. Our data 

show this assumption was incorrect. In light of our findings, we now offer an alternative 

interpretation of our results. Work by Choe et al. (2019) and Jenifer et al. (2022) has shown that 

high math anxiety leads to avoidance of high-effort math problems and math problem-solving 

strategies during math performance (though see also Thronsen et al., 2022). Here we suggest that 

this anxiety-related avoidance may lead HMAs to allocate resources toward reducing future 

effortful engagement during an arithmetic learning paradigm. Retrieval is comparatively less 

effortful than calculation (Ashcraft, 1982; Imbo & Vandierendonck, 2008), and – across the 

timescale of our experiment – retrieval learning may be relatively less effortful than procedural 

learning as DM-mediated learning is capable of operating over shorter-time scales (on the order of 

a few trials in adult humans; Ullman, 2016). Hence, in seeking the quickest route to reducing 

effortful arithmetic engagement, HMAs may have allocated greater resources to mastering 

retrieval of Repeated Problems via rapid DM-mediated learning mechanisms. 

Conversely, while PM-mediated efficiency gains can ultimately lead to reduced effort, these gains 

generally come only after many repetitions (Ullman, 2016). Hence in the current experiment, there 

was no simple path for HMAs to reduce effort on Unrepeated Problems, leading HMAs to 

potentially allocate fewer resources to them. This in turn may have degraded the quality of practice 

on these items, and because PM-mediated learning relies not just on quantity but also quality of 
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practice (Gupta & Cohen, 2002), degraded practice may have reduced the efficacy of PM-mediated 

learning mechanisms. For HMAs, accelerated retrieval learning on Repeated Problems and 

decelerated learning on Unrepeated problems my thus have widened the gap in the amount of effort 

required to complete each class of problems, thereby creating an insalubrious feedback loop. Math 

anxiety is known to lead to undesirable feedback cycles (Gunderson et al., 2018; Ashcraft, 2019; 

Dowker, 2019), and the current results may thus be another such example: HMAs commit less 

effort to practicing Unrepeated Problems, which increases the disparity in effort needed to compute 

them relative to Repeated Problems, leading to still less effort on Unrepeated Problems, and so on.  

While the interpretations provided in this section are admittedly speculative – and in the case of 

Repeated Problems also post-hoc – they are nevertheless grounded in multiple literatures. Our 

primary aim in presenting these interpretations is of course not to definitively claim they are 

correct, but to offer them as speculative but plausible hypotheses that may prove useful for future 

research across multiple literatures.  

4.2.3. Working Memory 
It is important to consider an alternative interpretation of our result showing impaired learning for 

HMAs on Unrepeated Problems – namely that the negative impact of MA on these problems 

operated primarily via well-known impairments of working memory (WM) among HMAs when 

doing math (Friso-van de Bos et al., 2013; Ji & Guo, 2023; Raghubar et al., 2010; Ashcraft & 

Krause, 2007a). Temporarily reduced WM among HMAs generally leads to lower performance 

for HMAs on more WM-demanding problems (e.g., Ashcraft & Krause, 2007a; Lyons & Beilock, 

2012). The question is whether differences in WM demands on the two problem types would 

predict the HMA-related learning patterns observed here. To understand how WM might relate to 

learning in the current context, it is useful to turn to literature on different memory systems. 
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Ablation work with animals (Packard et al., 1989) and research in the domain of language 

acquisition (Ullman, 2020) indicate that WM engagement may in fact disrupt PM learning. In 

another example from category learning, higher WM capacity is associated with more rapid 

learning of explicit, rule-based categorical structures thought to be mediated by DM, and 

decelerated learning of implicit, integrative categorical structures thought to be mediated by PM 

(DeCaro et al., 2008). In the current experiment, when completing the arithmetic task, the group 

we expect to have greater WM resources is LMAs, due to WM being partially compromised in 

HMAs (Friso-van de Bos et al., 2013; Ji & Guo, 2023; Raghubar et al., 2010; Ashcraft & Krause, 

2007a). Extrapolating from the work reviewed above, we would thus expect LMAs to show an 

advantage in arithmetic retrieval learning, and a disadvantage in arithmetic procedural learning – 

that is, accelerated learning (relative to HMAs) on Repeated Problems and decelerated learning on 

Unrepeated Problems. However, our results showed precisely the opposite. 

In sum, while we certainly agree with prior work that a WM-based account can help explain why 

HMAs and LMAs perform on math tasks differently, it appears that, at least in the current context, 

it fails to account for how HMAs and LMAs learn (different types of) arithmetic differently. More 

broadly, we see this as an important example of how mechanisms that explain performance are not 

necessarily those that explain learning.  

4.3. Implications and Methodological Considerations 
One potential implication of these results is that the impact of math anxiety may be different for 

arithmetic performance vs arithmetic learning. Similarly, mental arithmetic relies on a highly 

varied set of distinct and overlapping cognitive processes (Campbell, 2005; Dowker, 2023), and 

improvements in those disparate processes appears to entail disparate learning mechanisms 

(Menon, 2016b; De Smedt, 2016; Dowker, 2023). Thus, how math anxiety impacts arithmetic 
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learning also varies as a function of the relevant learning mechanism. This observation may have 

implications for teaching arithmetic. For instance, perhaps contrary to claims that rote retrieval-

based approaches to arithmetic learning (e.g., ‘drill and kill’) are especially debilitating for HMAs 

(e.g., Boaler, 2015), our results suggest this may be one area of arithmetic learning where HMAs 

might in fact excel. Indeed, work on foundational arithmetic retrieval might present an opportunity 

to build confidence in HMAs, while also cementing at least a subset of crucial arithmetic fluency 

skills. On the other hand, over-reliance on memorization-based strategies might come at the 

expense of fluency with executing more generalizable computation algorithms, which might put 

HMAs at a disadvantage when rote retrieval of certain items is not applicable. 

Our results also point to two methodological implications. First, they highlight the importance of 

considering different types of learning, even in the limited context of mental arithmetic learning. 

Differential learning trajectories between math anxiety groups only emerged when we isolated 

learning within each Problem Type (Repeated vs. Unrepeated). Had we aggregated the total 

learning trajectories across Problem Types, results would have suggested a net zero effect of math 

anxiety on learning (the MA × ln(Timepoint) effect did not approach significance in Table C-1). 

Second, differential learning trajectories between Problem Types emerged only when examined 

across two days. These results indicate that 24-hour spaced practice, possibly allowing for 

overnight consolidation, may be necessary to observe and unpack the various ways in which math 

anxiety does and does not impact math learning. Future examinations of math learning may do 

well to take these methodological points into consideration, utilizing different types of math 

problems and being cognizant of choosing timescales within which learning is anticipated to occur. 
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4.4. Limitations 

One important limitation of the current research is that we considered how math anxiety impacts 

only a very small subset of math learning. Further, while we examined two forms of arithmetic 

learning, we would certainly not claim to therefore have examined all possible types of arithmetic 

learning. Indeed, as our results clearly point to the conclusion that math anxiety impacts different 

types of arithmetic learning differently, this perhaps makes it all the more important for future 

work to examine how math anxiety impacts not just other aspects of arithmetic learning, but 

various types of math learning more broadly.  

A second limitation is that while we assessed the effect of 24-hour spacing on arithmetic learning, 

our study did not examine longer-term learning, and we cannot say whether the patterns of learning 

seen in our results would extend across these longer timescales. Future work investigating different 

timescales of math learning would be especially important given that timescales greater than 24-

hours are common in math education settings. It is also important to note that the retrieval and 

procedural arithmetic learning in the present study was experienced in tandem, with different 

problem types interspersed with one another throughout the math learning task. If one were to 

offer discrete arithmetic learning tasks, results may differ. 

A third limitation is that one of our main assumptions – and thus our first hypothesis – was wrong. 

While we presented a potential interpretation of our results by learning on prior literature on long-

term memory systems and how math anxiety impacts avoidance and effort allocation, this 

interpretation is admittedly speculative. Future work might put this interpretation to the test in (at 

least) two ways. First, future work might more explicitly test whether there is a link between 

learning on Repeated Problems and DM mechanisms, and between learning on Unrepeated 

Problems and PM mechanisms. Second, neural or psychophysiological correlates of effortful 
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processing might be deployed to more expressly test whether HMAs expend cognitive effort 

differently than HMAs in arithmetic learning. 

Despite these shortcomings, we hope the current study provides a reasonable initial step toward 

expanding research on the intersection between math anxiety, arithmetic learning and long-term 

memory systems. 

4.5. Conclusions 

Broadly, our results suggest that HMAs redirect cognitive resources away from practicing 

computationally intensive arithmetic calculation procedures and toward rapid rote-memorization 

of arithmetic facts. Further, the current work highlights the importance of distinguishing between 

performance and learning when considering the implications of math anxiety. Perhaps of particular 

interest, our results also show that math anxiety is not predictive of poor math learning across the 

board; even in the limited context of arithmetic learning, HMAs showed preserved or even 

enhanced arithmetic fact-retrieval learning. This latter result underscores the need to consider how 

math anxiety impacts different types of math learning, and it may provide a leverage point for 

initiating confidence-building interventions with math anxious individuals. On the other hand, the 

tendency to neglect effortful practice of arithmetic calculation procedures may lead to an 

undesirable feedback loop, with ever increasing reliance on inflexible retrieval-based strategies 

among HMAs. While we believe this work provides insight into how math anxiety impacts 

different types of arithmetic learning, we believe it is merely a starting point. Substantial future 

work is needed to fully unpack the myriad ways in which math anxiety may interact with the 

different forms of math learning.  
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APPENDIX A 

Table A-1 
2(Type: Repeated, Unrepeated) × 6[Timepoint: ln(1-6)] 

  Dfn Dfd F Cohen’s D p 

Within Subjects Effects           
Type 1 81 875.04 0.96 3.54E-45 
Timepoint 5 405 325.55 0.89 2.09E-139 
Type x Timepoint 5 405 111.19 0.76 9.95E-74 
Within Subjects 
Contrasts           
Timepoint 1 81 707.01 0.95 8.98E-42 
Type x Timepoint 1 81 237.03 0.86 8.96E-26 

Table A-1 Notes. Table A-1 shows the results of the final model from Research Question 1. 
Note that contrast effects are the natural log of Timepoint [ln(1-6)]. As Type has only two 
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.   
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APPENDIX B 

Table B-1 
HMA: 2(Type: Repeated, Unrepeated) × 6[Timepoint: ln(1-6)] 

  Dfn Dfd F Cohen’s D p 

Within Subjects 
Effects           
Type 1 40 401.61 0.954 1.81E-22 
Timepoint 5 200 142.31 0.884 7.09E-64 
Type x Timepoint 5 200 87.04 0.828 2.85E-48 
Within Subjects 
Contrasts           
Timepoint 1 40 328.54 0.944 6.82E-21 
Type x Timepoint 1 40 199.08 0.913 4.04E-17 

Table B-1 Notes. Table B-1 shows the results of the HMA model from Research Question 2. 
Note that contrast effects are the natural log of Timepoint [ln(1-6)]. As Type has only two 
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.   

 

Table B-2 
LMA: 2(Type: Repeated, Unrepeated) × 6[Timepoint: ln(1-6)] 

  Dfn Dfd  F Cohen’s D p 

Within Subjects 
Effects 

     

Type 1 40 511.56 0.96 2.10E-24 
Timepoint 5 200 193.90 0.91 1.17E-74 
Type x Timepoint 5 200 37.02 0.69 9.15E-27 
Within Subjects 
Contrasts 

  
 

  

Timepoint 1 40 385.10 0.95 3.89E-22 
Type x Timepoint 1 40 82.99 0.82 2.65E-11 

Table B-2 Notes. Table B-2 shows the results of the LMA model from Research Question 3. 
Note that contrast effects are the natural log of Timepoint [ln(1-6)]. As Type has only two 
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.   
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APPENDIX C  

Table	C-1	
2(Type: Repeated, Unrepeated) × 6[Timepoint: ln(1-6)] × 2(Math Anxiety: HMA, LMA) 

  Dfn Dfd F Cohen’s D p 

Between Subjects 
Effects           
Math Anxiety 1 80 10.65 0.34 0.002 
Within Subjects 
Effects      
Type 1 80 887.31 0.96 4.66E-45 
Timepoint 5 400 324.01 0.9 3.38E-138 
Type x MA 1 80 2.14 0.16 0.148 
Timepoint x MA 5 400 0.62 0.09 0.687 
Type x Timepoint 5 400 117.13 0.77 4.60E-76 
Type x Timepoint x MA 5 400 5.33 0.25 9.43E-05 
Within Subjects 
Contrasts           
Timepoint 1 80 704.78 0.95 2.02E-41 
Timepoint x MA 1 80 0.74 0.1 0.391 
Type x Timepoint 1 80 268.98 0.88 2.60E-27 
Type x Timepoint x MA 1 80 11.92 0.36 8.91E-04 

Table C-1 Notes. Table C-1 shows the results of the primary model from Research Question 
3. Note that contrast effects are the natural log of Timepoint [ln(1-6)]. As Type has only two 
levels, the contrast effect of Type is identical to the Within-Subjects effect of Type.   
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Table	C-2	
Repeated Problems: 6[Timepoint: ln(1-6)] × 2(Math Anxiety: HMA, LMA) 

  Dfn Dfd F Cohen’s D p 

Between Subjects 
Effects           
Math Anxiety 1 80 5.98 0.26 0.017 
Within Subjects 
Effects      
Timepoint 5 400 372.67 0.91 4.65E-148 
Timepoint x MA 5 400 2.98 0.19 0.012 
Within Subjects 
Contrasts          
Timepoint 1 80 664.28 0.94 1.69E-40 
Timepoint x MA 1 80 5.36 0.25 0.023 

Table C-2 Notes. Table C-2 shows the results of the model for Repeated Problems from 
Research Question 3. Note that contrast effects are the natural log of Timepoint [ln(1-6)].  

 

Table	C-3	
Unrepeated Problems: 6[Timepoint: ln(1-6)] × 2(Math Anxiety: HMA, LMA) 

  Dfn Dfd F Cohen’s D p 

Between Subjects 
Effects           
Math Anxiety 1 80 11.86 0.36 9.18E-04 
Within Subjects 
Effects      
Timepoint 5 400 93.28 0.73 6.31E-65 
Timepoint x MA 5 400 1.86 0.15 0.1 
Within Subjects 
Contrasts          
Timepoint 1 80 222.79 0.86 7.79E-25 
Timepoint x MA 1 80 3.67 0.21 0.059 

Table C-3 Notes. Table C-3 shows the results of the model for Unrepeated Problems from 
Research Question 3. Note that contrast effects are the natural log of Timepoint [ln(1-6)].  
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APPENDIX D  
Table D-1 
2(Type: Repeated, Unrepeated) × 2(Day: 1, 2) × 2(Math Anxiety: HMA, LMA) × 3[Timepoint: 
ln(1-3)] 

  Dfn Dfd F Cohen’s D p 

Between Subjects Effect           
Math Anxiety 1 80 10.65 0.34 0.002 

Within Subjects Effects      
Type 1 80 887.31 0.96 4.66E-45 
Day 1 80 410.00 0.91 3.18E-33 
Timepoint 2 160 301.09 0.89 5.82E-55 
Type x MA 1 80 2.14 0.16 0.148 
Day x MA 1 80 0.10 0.03 0.757 
Timepoint x MA 2 160 1.22 0.12 0.298 
Type x Day 1 80 138.59 0.8 3.83E-19 
Type x Timepoint 2 160 160.40 0.82 5.93E-39 
Day x Timepoint 2 160 185.58 0.84 2.05E-42 
Type × MA × Day 1 80 10.66 0.34 0.002 
Type × MA × Timepoint 2 160 3.42 0.2 0.035 
Day x MA x Timepoint 2 160 0.60 0.09 0.551 
Type x Day x Timepoint 2 160 41.31 0.58 3.44E-15 
Type x Day x Timepoint x MA 2 160 0.69 0.09 0.501       

Within Subjects Contrasts Dfn Dfd F Cohen’s D p 
Day 1 80 410.00 0.91 3.18E-33 
Timepoint 1 80 321.74 0.89 9.15E-30 
Day x MA 1 80 410.00 0.91 3.18E-33 
Timepoint x MA 1 80 1.34 0.13 0.251 
Type x Day 1 80 138.59 0.8 3.83E-19 
Type x Timepoint 1 80 172.19 0.83 1.21E-21 
Day x Timepoint 1 80 270.69 0.88 2.14E-27 
Type × MA × Day 1 80 10.66 0.34 0.002 
Type × MA × Timepoint 1 80 2.30 0.17 0.133 
Day x MA x Timepoint 1 80 0.86 0.1 0.357 
Type x Day x Timepoint 1 80 56.29 0.64 7.57E-11 
Type x Day x Timepoint x MA 1 80 0.72 0.09 0.4 

Table D-1 Notes. Table D-1 shows the results of the model for Research Question 4. Note that 
contrast effects are the natural log of Timepoint [ln(1-3)]. As Day and Type have only two 
levels, the contrast effects of Day and Type are identical to the Within-Subjects effects of Day 
and Type, respectively.   

 


