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There is currently considerable discussion about the relative influences of evolutionary and cultural
factors in the development of early numerical skills. In particular, there has been substantial debate and
study of the relationship between approximate, nonverbal (approximate magnitude system [AMS]) and
exact, symbolic (symbolic number system [SNS]) representations of number. Here we examined several
hypotheses concerning whether, in the earliest stages of formal education, AMS abilities predict growth
in SNS abilities, or the other way around. In addition to tasks involving symbolic (Arabic numerals) and
nonsymbolic (dot arrays) number comparisons, we also tested children’s ability to translate between the
2 systems (i.e., mixed-format comparison). Our data included a sample of 539 kindergarten children
(M � 5.17 years, SD � .29), with AMS, SNS, and mixed-comparison skills assessed at the beginning and
end of the academic year. In this way, we provide, to the best of our knowledge, the most comprehensive
test to date of the direction of influence between the AMS and SNS in early formal schooling. Results
were more consistent with the view that SNS abilities at the beginning of kindergarten lay the foundation
for improvement in both AMS abilities and the ability to translate between the 2 systems. It is important
to note that we found no evidence to support the reverse. We conclude that, once one acquires a basic
grasp of exact number symbols, it is this understanding of exact number (and perhaps repeated practice
therewith) that facilitates growth in the AMS. Though the precise mechanism remains to be understood,
these data challenge the widely held view that the AMS scaffolds the acquisition of the SNS.
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In the search for the origins of numerical abilities, there has been
a debate regarding the extent to which basic, possibly innate, skills
that humans share with nonhuman animals serve as the foundation
for more complex skills that are taught more deliberately via
cultural practices and, in particular, via formal education. Con-
versely, it is of considerable interest whether cultural inputs may
shape and refine more evolutionarily basic abilities.

In the domain of numerical cognition and mathematics edu-
cation, a major current debate concerns the interplay between
the ability to discriminate between approximate, nonverbal
magnitudes (such as arrays of dots) and the ability to represent
numbers in exact, symbolic form (e.g., as with Indo-Arabic
numerals). The former, approximate and nonverbal capacity is
shared across many species (for reviews, see Agrillo & Beran,
2013; Nieder & Dehaene, 2009; Pahl, Si, & Zhang, 2013) and,
at least in basic form, is thought to be present from birth in
humans (e.g., Lipton & Spelke, 2003; Xu & Spelke, 2000).
Recently, it has become apparent that humans and other species
can do more than just compare nonverbal magnitudes; they can
even perform simple, approximate arithmetic (such as sums and
ratios; e.g., Brannon, Wusthoff, Gallistel, & Gibbon, 2001;
Capaldi & Miller, 1988; Matthews, Lewis, & Hubbard, 2016;
McCrink & Spelke, 2010, 2016). Such abilities are thought to
be underpinned by what is often referred to as the approximate
number system, or ANS. There is some debate over the extent
to which these approximate magnitudes are strictly numerical
(e.g., Leibovich & Henik, 2013); hence, for present purposes,
we adopt the broader term: approximate magnitude system
(AMS).

Number symbols are cultural in origin, because they rely on
arbitrary social conventions to determine their forms and the basic
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rules that govern how they are to be mathematically manipulated
(Zhang & Norman, 1995). We refer here to the ability to represent
and manipulate number symbols as the symbolic number system,
or SNS. Over the course of development, children go from viewing
symbols as meaningless shapes to having a rich understanding of
their meaning. A key question is how children develop an under-
standing of the meaning of number symbols and to what repre-
sentations these symbols become linked during this ontogenetic
process.

One view that has garnered considerable attention is that the
AMS plays a crucial role as the foundation for and scaffold of the
SNS (Dehaene, 1997, 2008; Feigenson, Dehaene, & Spelke, 2004;
Feigenson, Libertus, & Halberda, 2013; Gallistel & Gelman, 2000;
Piazza, 2010). In other words, the evolutionarily basic capacity, in
the form of the AMS, is thought to provide the critical foundation
for the culturally acquired capacity (the SNS). This is an intuitive
hypothesis, capitalizing on the broader notion that cultural skills
must at some level coopt extant, evolutionarily ancient, neural
structures (Dehaene & Cohen, 2007). Moreover, many of the basic
operations that form the basis of the SNS—such as relative quan-
tity (greater–lesser), ordinality, and even simple arithmetic—are
available, at least in approximate form, to the AMS (e.g., Brannon
et al., 2001; Capaldi & Miller, 1988; Matthews et al., 2016;
McCrink & Spelke, 2010, 2016). Furthermore, numerous studies
have shown that the precision of an individual’s AMS is predictive
of SNS abilities (for a review and meta-analysis, see Chen & Li,
2014). There is also work to suggest that arithmetic training using
approximate, nonsymbolic magnitudes (arrays of dots) leads to
improvement in symbolic calculation scores (Hyde, Khanum, &
Spelke, 2014; Park & Brannon, 2013, 2014). Taken together, these
results strongly suggest that one’s early formal understanding of
the SNS may be bootstrapped from the informal AMS. A straight-
forward prediction is that children who begin kindergarten with
stronger AMS skills should be best positioned to acquire early
formal SNS skills during the school year: Children with strong
AMS skills at the beginning of the year should show the strongest
growth in SNS skills over the course of the year.

An alternative view is that once one acquires a basic grasp of
exact number symbols, it is this exact understanding of number
(and repeated practice therewith) that facilitates growth in the
AMS. In other words, approximate, nonverbal quantities increas-
ingly come to be understood in symbolic terms (Mix, 2008; Mix,
Huttenlocher, & Levine, 1996; Mix, Huttenlocher, & Levine,
2002; Mussolin, Nys, Leybaert, & Content, 2016). From this
perspective, it is the culturally acquired SNS that refines the
evolutionarily more basic capacity (the AMS). Though perhaps
somewhat counterintuitive, there is evidence to support the notion
that cultural inputs may have an influence on the AMS. For
example, Piazza, Pica, Izard, Spelke, and Dehaene (2013) exam-
ined adults and children among the Mundurucú (an indigene group
in the Amazon) and found that those with access to education
showed higher AMS acuity—specifically, higher precision when
comparing arrays of dots. No difference as a function of education
was found on a task requiring participants to determine which of
two disks was larger in area. These results suggest that educational
inputs may increase the precision of the evolutionarily more basic
capacity to process approximate magnitudes. That said, one cannot
rule out the possibility that those with higher AMS acuity were
predisposed to seek out educational opportunities. Moreover, it is

not clear precisely what educational inputs (e.g., math education in
particular or socialization aspects of the educational environment)
may have been responsible for the observed difference in AMS
acuity. Mussolin, Nys, Content, and Leybaert (2014) recently
provided evidence suggesting that symbolic numerical skills in
particular predict improvement in AMS acuity. Mussolin et al.
examined 57 Belgian preschoolers (ages 3–4) at two time points
(roughly seven months apart). They showed that scores on a
symbolic numerical battery at Time 1 significantly predicted
growth in AMS acuity (i.e., AMS acuity at Time 2, after control-
ling for AMS acuity at Time 1). It is interesting that the reverse
relation was both nonsignificant and significantly smaller (i.e.,
SNS1 � �AMS � AMS1 � �SNS), suggesting the direction of
influence runs specifically from the SNS to the AMS and not the
other way around (for a similar result in a sample of 30 first
graders, see also Matejko & Ansari, 2016).

Linking Symbolic and Nonsymbolic
Numerical Processing

Whether early numerical influences flow primarily from the
AMS to the SNS or the other way around, both accounts require
some mechanism for linking the two systems to transmit this
influence. From the AMS ¡ SNS perspective, one such sugges-
tion is that approximate representations of quantity in fact serve as
the semantic content of their symbolic counterparts (e.g., Dehaene,
2008; Feigenson et al., 2004, 2013; Piazza, 2010; Piazza, Pinel, Le
Bihan, & Dehaene, 2007; Verguts & Fias, 2004). This view
presupposes a strong link between the AMS and SNS more or less
from the time one begins to acquire number symbols. On the other
hand, from the SNS ¡ AMS perspective, one need not presuppose
a direct link between the SNS and AMS even early in develop-
ment. Hence, an important additional piece of the debate is the
need for and possible development of an ability to translate be-
tween symbolic and approximate numerical representations (Bran-
kaer, Ghesquière, & De Smedt, 2014; Mundy & Gilmore, 2009).

One way to probe this translational ability is to ask participants
to match or compare quantities across (symbolic and nonsymbolic)
formats. In a study with adults, Lyons, Ansari, and Beilock (2012)
demonstrated that the ability to compare a symbolic (numeral)
stimulus with a nonsymbolic (dot array) stimulus is nontrivial:
Mixed-format comparisons took significantly longer than did ei-
ther symbolic or nonsymbolic same-format comparisons. The cost
of mixing numerals and dots was also significantly higher than the
cost of mixing numerals and number–words, suggesting the key
distinction is not necessarily visual format but whether the stimuli
point to symbolic (SNS) or nonsymbolic (AMS) representations.
Recent neural evidence has also provided evidence consistent with
this distinction (Bulthé, De Smedt, & Op de Beeck, 2014; Bulthé,
De Smedt, & Op de Beeck, 2015; Damarla, Cherkassky, & Just,
2016; Damarla & Just, 2013; Lyons, Ansari, & Beilock, 2015). In
other tasks that force one to translate between AMS stimuli and
verbal symbols (number–words), one finds systematic biases
(Crollen, Castronovo, & Seron, 2011; Izard & Dehaene, 2008). On
the other hand, each of these studies—including Lyons et al.
(2012)—used literate adults as participants. Thus, the distinction–
separation between the AMS and SNS may arise only over time,
after considerable educational experience has perhaps shifted the
focus onto symbolic representations of number. Indeed, Lyons et
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al. strongly implied that their results were likely specific to literate
adults and suggested that the AMS and SNS may be strongly
linked early in development and become “estranged” only later in
development. This proposal is more in keeping with the AMS ¡

SNS perspective because it assumes a central role for the AMS in
shaping early SNS representation. From this perspective—in par-
ticular, assuming the early meaning of number symbols is derived
directly from their nonsymbolic counterparts (e.g., Dehaene, 2008;
Feigenson et al., 2004; Piazza et al., 2007; Verguts & Fias,
2004)—one would expect the cost of mixing numerals and dots to
be minimal in younger children, with this cost increasing over
developmental time as the two systems (AMS and SNS) become
increasingly distinct.

An alternative view is that the AMS and SNS are actually
formed more or less independently of one another (Carey, 2011;
Le Corre & Carey, 2007; Lyons & Ansari, 2015). This would
imply a high cost of mixing symbolic and nonsymbolic inputs
early in development. It is intriguing that the SNS ¡ AMS view
outlined earlier would predict a reduction in the cost of mixed-
format comparisons over development. This is because one’s un-
derstanding of approximate, nonverbal quantities is increasingly
informed by one’s knowledge of and experience with exact sym-
bolic representations of numbers (Mix, 2008; Mix et al., 1996;
Shusterman, Slusser, Halberda, & Odic, 2016), thereby increasing
the link between the AMS and the SNS over developmental time.

Here it is also important to note that the AMS ¡ SNS view and
SNS ¡ AMS view differ in terms of what is more likely to lead
to improvement in the ability to translate between symbolic and
nonsymbolic quantities. From the former (AMS ¡ SNS) perspec-
tive, an individual with high AMS acuity should have less trouble
affixing approximate, nonsymbolic quantities to exact symbolic
representations: Early AMS skills should predict growth in
symbolic–nonsymbolic mixing skills. From the latter (SNS ¡

AMS) perspective, nonsymbolic quantities should increasingly be
understood in terms of their symbolic counterparts: Early SNS
skills should predict growth in symbolic–nonsymbolic mixing
skills. Hence, it is crucial to assess the degree to which either early
AMS or early SMS (or both) skills predict developmental change
in how well children translate between the two systems.

Current Study

In the current study, we empirically probe these two accounts of
early symbolic number development—along with the hypotheses
each raises—in a single, large, longitudinal study focusing on over
500 children over the course of kindergarten (i.e., in the fall and
then the spring). Hence, we focused on the early stages of formal
education to address the broader questions (a) To what extent are
the AMS and SNS linked at the outset of formal education? and (b)
Does the AMS shape the SNS, or the other way around? In sum,
here we provide the most comprehensive directional test to date of
the early relation between the AMS and the SNS.

We examined this question by testing several complementary
hypotheses (summarized in Table 1).1 First, we examined the cost
of mixing between formats in a manner similar to that in Lyons et
al. (2012) by computing the degree to which performance on a
mixed-comparison task was worse than that on dot- and numeral-
comparison tasks (in particular, the critical difference is between
mixed comparison and whichever shows worse performance—

dots or numerals). Specifically, because the AMS is thought to
form the foundation of the SNS, the AMS ¡ SNS view predicts a
minimal early (in the fall) cost of mixing formats (Hypothesis 1a;
see Table 1 for a summary of hypotheses) that either increases or
stays constant over time (from fall to spring; Hypothesis 2a). The
SNS ¡ AMS view assumes the two systems are initially distinct
and so predicts a large early (in the fall) mixing cost (Hypothesis
1b) that, due to reinterpretation of the AMS in terms of the SNS,
lessens over time (from fall to spring; Hypothesis 2b).

Next, we examined whether early (fall) AMS or SNS ability is
a better predictor of growth (change from fall to spring) in the
ability to translate between the two systems. Under the assumption
that the AMS provides the critical foundation for the culturally
acquired SNS, the AMS ¡ SNS view predicts that dot comparison
in the fall will be a better predictor of mixed-comparison growth
(Hypothesis 3a); the SNS ¡ AMS view predicts that numeral
comparison in the fall will be a better predictor of mixed-
comparison growth (Hypothesis 3b).

Finally, we examined whether early (fall) AMS ability predicts
growth in SNS ability (change from fall to spring), the other way
around, or both. The AMS ¡ SNS view holds that dot comparison
in the fall will be a better predictor of numeral-comparison growth
(Hypothesis 4a); the SNS ¡ AMS view holds that numeral com-
parison in the fall will be a better predictor of dot-comparison
growth (Hypothesis 4b). The relation could be bidirectional (Hy-
pothesis 4c, as suggested by Feigenson et al., 2013; Mussolin et al.,
2016). Note also that, should results from testing the preceding
hypotheses provide evidence that the AMS and the SNS are more
likely to be distinct systems even in kindergarteners, it is still
important to test Hypothesis 4. Two distinct systems can still
influence one another; thus, one could posit a modified version of
the AMS ¡ SNS view in which the AMS influences SNS devel-
opment without being part of the same underlying system.

Method

Participants

Participants were 613 children in Senior Kindergarten kinder-
garten2 from 36 schools in the greater Toronto area (all schools are
part of the Toronto District School Board, TDSB, whose students
comprise one of the largest and most diverse school districts in
Canada). Of these, 539 children completed all three critical
number-comparison tasks at both time points; subsequent analyses
proceeded with N � 539 (241 female). Mean age at the time of the
first testing session was 5.17 years (SD � .29, range � � 4.67–
5.77SD �). Sixty-five children were not born in Canada. Socio-

1 Our measure of AMS ability was a standard dot-comparison task; SNS
ability was measured via a numeral comparison task; and the ability to
translate between the two systems was measured via a mixed-format
comparison task.

2 Note that in several Canadian provinces, Kindergarten is divided into
‘Junior’ and ‘Senior’ Kindergarten. The former is akin to what is often
referred to elsewhere as ‘preschool’; this typically takes place when chil-
dren are about 4 years old and is often relatively informal in overall
structure. Senior Kindergarten is perhaps more closely related to what is
referred to as Kindergarten in other areas. Instruction at this phase, while
not as strictly structured as first grade, nevertheless begins to emphasize
many basic formal concepts in mathematics and other areas.
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economic status (SES) was not available for individual children;
however, it could be estimated for each school. Schools were
classified as 0 � Low-SES (24%), 1 � Medium-Low-SES (31%),
2 � Medium-High-SES (34%), and 3 � High-SES (11%).

Procedure

All behavioral data were collected using paper and pencil Nu-
meracy Screener booklets (complete versions of the screeners can
be found in the online supplemental materials). Data were col-
lected at two time points: fall of 2014 and spring of 2015.3 The
average interval between time points was 191.84 days (SD �
14.30, range � 141–217). The same version of the booklets was
used at each time point.

Data were collected in collaboration with teachers, early child-
hood educators (ECEs), and administrators in TDSB schools.
Testing materials were approved by the University of Western
Ontario’s Non-Medical Research Ethics Board. The data reported
here are part of a larger joint research project between the TDSB
and the University of Western Ontario (UWO), which was been
approved by the TDSB’s External Research Review Committee
(ERRC). The TDSB’s research department was authorized by the
board to collect student personal information and assessment data
for the purposes of the board’s educational planning. For this joint
research project, parents of participating students were informed
by their respective schools that the assessment data were to be
collected by the classroom educators and that the confidential
student-level data collected were to be kept strictly within the
TDSB’s Research and Information Services. Only depersonalized
data without any school or student identifiers were shared with
external partners (including researchers at UWO).

All data collection was completed by teachers and early child-
hood educators from the classrooms where testing took place.
Testing was conducted on a one-on-one basis with each student in
a separate, quiet area, requiring approximately 15–20 min per
student. Teachers and ECEs were provided with an in-service work
day during which they were given explicit training on administer-
ing test booklets. Written instructions were also provided for each
task in the booklet.

For each task, teachers went over a predefined set of instructions
with the child. These instructions were printed in the booklet at the
start of each task, along with other guidelines for administering the
task. The teacher went over several examples with the child. They
then explained to the child,

You should try to complete as many problems as you can. You have
two minutes. Work as fast as you can without making too many
mistakes. If you make a mistake, draw an X through the mistake and
put a new line through the right answer.

Teachers then demonstrated how to correct a mistake. A corrected
answer was counted as correct. Children were also instructed to
complete the items for a given task in the order they were pre-
sented, without skipping items (“Make sure you don’t skip any
items”). Once the child was ready, the teacher started the timer,
and the child turned the page to begin.

Comparison Tasks

Task booklets were based loosely on the design originally
innovated by Nosworthy, Bugden, Archibald, Evans, and Ansari
(2013). Booklets contained six numeral tasks, though only three of
these—the three numeral-comparison tasks, described in detail in
the next sections—are of direct theoretical relevance to the ques-
tions and hypotheses outlined earlier. Children completed three
comparison tasks: numeral comparison, dot comparison, and
mixed comparison—always in that order. Each comparison task
comprised 72 total items, with 12 items per page. Children were
given 2 min to complete as many items as possible per task.

Numeral comparison (NC). Examples of the numeral-
comparison task are shown in Figure 1a. Children were told, “In
this task, your job is to decide which of the two numbers is bigger.
Draw a line through the box with the number that means the most
things.” Numerals ranged from 1 to 9, with absolute numerical

3 The majority of children were tested in October (89%) and May (90%),
though a few were tested in November (4%) or December (7%) in the fall
or April (7%) or June (3%) in the spring. Median test dates were October
27 (fall) and May 8 (spring).

Table 1
Hypotheses and Predictions

Theoretical view and
hypothesis Prediction Explanation

AMS ¡ SNS
1a MC1 � DC1 No cost of mixing formats
2a (DC1–MC1) � (DC2–MC2) Mixing cost increases over time
3a DC1 ¡ �MC Early AMS predicts growth in mixing formats
4a DC1 ¡ �NC Early AMS predicts growth in SNS

SNS ¡ AMS
1b MC1 � DC1 Cost of mixing formats already present
2b (DC1–MC1) � (DC2–MC2) Mixing cost decreases over time
3b NC1 ¡ �MC Early SNS predicts growth in mixing formats
4b NC1 ¡ �DC Early SNS predicts growth in AMS

SNS ↔ AMS
4c (DC1 ¡ �NC) and (NC1 ¡ �DC) Early AMS predicts growth in SNS and early SNS predicts growth in AMS

Note. AMS � approximate magnitude system; SNS � symbolic number system; MC � mixed comparison; DC � dot comparison; NC � numeral
comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); � � growth (Time 2 controlling for Time 1).
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distances |n1 – n2| of 1 to 3 and ratios (minimum–maximum) from
.250 to .889. Specifically, all 15 combinations of 1–9 with dis-
tances of 1 or 2 were included, along with three combinations with
distance 3 ({1,4}, {3,6}, {6,9}). This yielded 18 possible combi-
nations. Of these 18, nine were permuted such that the larger
number was on the left, and the other nine were permuted such that
the larger number was on the right. The nine trials were chosen
such that the larger side was in no way related to numerical size,
distance, or ratio. The next 18 trials were arranged in the opposite
manner. The last 36 trials were determined in the same manner.
Trial order was then pseudorandomized within each set of 18 trials
such that, for any nth item in the sequence, average numerical
ratio, size, and distance were equated across comparison tasks
(numeral, dot, mixed). This final step ensured that if, for instance,
a given child completed exactly 10 trials on each of the three
comparisons’ tasks, the ratios (or sizes or distances) encountered
on each task would not have differed significantly across tasks (all
ps � .20). In other words, comparing performance across tasks
was not confounded with these numerical factors.

Dot comparison (DC). Examples of the dot-comparison task
are shown in Figure 1b. Children were told, “In this task, your job
is to decide which of two boxes contains more dots. Draw a line
through the box that has the most dots in it.” Children were also
instructed, “Don’t try to count the dots. Instead, just look at the
dots and try your best to guess which side has more dots in it.”
Numerosities and trial order were determined in the same manner
as in the numeral-comparison task just described. In addition, two
versions of a given permutation were created. In one version, dot
area was positively correlated with numerosity, and overall con-
tour length was negatively correlated with numerosity; in the other
version, the opposite was true. On a given trial, the two parameters
were thus in opposition; between trials, relying on any single
parameter would have led to chance performance (Gebuis &

Reynvoet, 2012). Parameter version order was further pseudoran-
domized such that it was not informative of the correct answer
within a given segment of trials.

Mixed comparison (MC). Examples of the mixed-
comparison task are shown in Figure 1c. Children were told,

In this task, your job is to decide whether a number or a group of dots
means more things. If the number means more things, draw a line
through the number. If the dots mean more than the number, then
draw a line through the dots.

As with dot comparisons, children were also instructed, “Don’t try
to count the dots. Instead, just look at the dots and try your best to
guess which side means more.” Numerosities and trial order were
determined in the same manner as in the numeral-comparison task
described earlier. In addition, which side contained the numeral
and which side the dots was pseudorandomized such that it was not
informative of the correct answer within a given segment of trials.

Scoring. Raw scores were computed as the net number of
items correctly completed within the 2-min time limit. In a timed
task such as this, it is crucial to adjust for guessing; randomly
guessing on all 72 items would yield, on average, a raw score of
36. Hence, scores were adjusted for guessing using this standard
adjustment:

A � C � I
(P � 1) ,

where A is the adjusted score, C is the number correct, I is the
number incorrect, and P is the number of response options (Row-
ley & Traub, 1977). This method has the effect of adjusting a
guessing strategy, on average, to 0. For instance, in a four-item
multiple-choice exam (where each choice is equally probable),
randomly guessing on 20 items would yield, on average, an un-
adjusted score (C in the equation) of 5. The adjusted score (A)
would be

5 � 15
(4 � 1) � 0.

In the current case, each item had two alternatives (left and right
quantity, equally likely to be correct), so adjusted scores were
effectively correct minus incorrect (A � C – I). That said, results
were highly similar regardless of whether adjusted or raw scores
were used, indicating that the presence of guessing strategies did
not substantially influence the results. Mean adjusted scores are
given in Figure 2.

Covariates

For all regression analyses, the following variables were in-
cluded as control variables: age (years), sex, whether a child was
born in Canada (0 or 1), school SES, percentage of days absent
during the kindergarten school year (M � 8.9%, SD � 7.2,
range � 0–50.3),4 and testing interval (in days).5

4 Absentee rates were not available for three children. These children
were assigned the average rate (8.9%). Results did not differ if these
children were excluded.

5 One of the two testing dates was not recorded for 20 children (and
hence testing interval could not be computed). These children were as-
signed the average interval (191.84 days). Results did not differ if these
children were excluded.

Figure 1. Examples of the numeral- (Panel a), dot- (Panel b), and mixed-
(Panel c) comparison tasks.
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In addition, we controlled for children who may not have
understood a given task. Rather than exclude a child altogether for
failing to perform above chance (adjusted score �0) on a single
task, we instead created a dummy variable for each task, coded as
1 if a child’s adjusted score �0, or 0 if a child’s adjusted score �0.
In any regression model that included a given task (as either an
independent or a dependent variable), the corresponding dummy
variable for that task was also included as a covariate of no
interest. Note that these variables were necessarily (anti-)
correlated with the variables of interest: actual performance (ad-
justed or otherwise). This makes this approach relatively conser-
vative, indicating that we have perhaps slightly underestimated
effect sizes (i.e., partial correlations). It is important to note,
therefore, that all nonsignificant (p � .05) results remained so,
whether or not these dummy variables were included.

Predicting Growth

To test Hypotheses 3 and 4 (regarding the direction of influence
between the AMS and SNS), we examined which tasks at Time 1
uniquely predicted growth in which of the other tasks. As recom-
mended by Castles and Coltheart (2004; see also a similar discus-
sion in Sasanguie, Defever, Maertens, & Reynvoet, 2014), growth
was assessed by predicting spring (Time 2) scores after controlling
for fall (Time 1) scores. This is an estimate of growth because it
removes the Time 1 variance from both the predictor and the
outcome, meaning that any residual relation between the predictor
and outcome is, by definition, specific to what is unique to the
outcome at Time 2.6 Predicting Time 2 while controlling for Time
1 is also preferable because the within-task relation across time
(e.g., DC Time 1 � DC Time 2) is interpretable. However, such
relations (i.e., the circular arrows in Figure 3) are not, strictly
speaking, predictions of growth, though, of importance, they are
unique to that task, because the other tasks (e.g., NC and MC at
Time 1) are of course included in the model. In this way, consistent
with Mussolin et al. (2014), we computed three regression models,
predicting growth in each of the three comparison tasks. For

example, to predict numeral-comparison growth, we adjusted the
outcome scores on spring (Time 2) numeral comparison, and the
main predictors of interest were fall (Time 1) numeral, dot, and
mixed adjusted scores (along with all the relevant covariates, as
noted earlier).

Reliability

Due to time constraints, we used timed tests for the three
comparison tasks; interitem reliability (i.e., Cronbach’s alpha)
could not be computed over all 72 possible items in each task
because not all children completed all 72 items (indeed, few did).
Instead, we identified the maximum number of trials that at least
two thirds of participants completed across all three tasks (we used
Time 1 data here, because that was the first time children encoun-
tered all tasks). The first 20 trials for dot-, numeral-, and mixed-
comparison tasks were completed by 70.3%, 68.8%, and 67.7% of
participants, respectively. Limiting reliability estimates to just
these participants and just the first 20 trials, we found reasonable
to good reliability for all three tasks (dot comparison: � � .70,
numeral comparison: � � .83, mixed comparison: � � .69; results
were similar if other arbitrary thresholds were adopted).

Though reliabilities were fairly comparable to one another, that
for numeral comparison was a bit higher than for the other two
tasks, which may have inflated regression results for this task.
Indeed, differences in measurement reliability are known to pose a
major potential confound for cross-lagged panel longitudinal mod-
els, such as the type we used here (Hamaker, Kuiper, & Grasman,
2015; Rogosa, 1980). To address this concern, we recomputed the
partial correlations in Figure 3, but only after disattenuating the
relation between each pair of critical variables for the reliabilities
of the relevant variables (e.g., Murphy & Davidshofer, 2004). Our
central conclusions from testing Hypotheses 3 and 4 remained
unchanged (see Appendix C for complete results), though it is
important to acknowledge that, if some alternative conception of
the comparison measures’ reliabilities were devised in the future,
results might change.

Manipulation Check—Ratio Effects

An important assumption of the AMS view is that nonsymbolic
magnitude processing reliably elicits ratio effects (as the ratio
between the two quantities being compared approaches 1, perfor-
mance diminishes). It was thus important to check that the dot-
comparison task in particular reliably elicited ratio effects. We
assessed this at Time 1 (when children were least familiar with the
tasks) by examining whether accuracy decreased as ratio increased
(ratio was computed here as minimum–maximum). For simplicity,

6 Note that this method is preferred over using change scores (e.g., Time
1–Time 2) for several reasons. First, change scores contain variance from
both Time 1 and Time 2. If one found a correlation, for example, between
numerals (NC) at Time 1 and dot (DC) change scores, it would not be clear
whether this was due to DC variance at Time 1 or at Time 2 (or both). One
can include DC scores at Time 1 as a covariate to remove this variance;
however, this yields results identical to just predicting Time 2 after con-
trolling for Time 1 (as we have done here). Second, a given score at Time
1 will necessarily be correlated with a change score based on that same
variable (e.g., DC at Time 1 predicting DC change scores), making such
results largely uninterpretable.

Figure 2. Mean performance (adjusted scores: Correct – Incorrect) for
the three comparison tasks in the fall (Time 1) and spring (Time 2). Error
bars indicate standard errors of the mean. See the online article for the color
version of this figure.
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we binned trials into far (ratio � .6, M � .421), mid (.6 � ratio �
.75, M � .710), and near (.75 � ratio, M � .839). Overall accuracy
clearly fell as a function of ratio in all three tasks: DC: far �
91.68% (SE � .68), mid � 77.50% (SE � .92), near � 64.51%
(SE � .72); MC: far � 88.13% (SE � .83), mid � 73.31% (SE �
1.00), near � 65.63% (SE � .83); NC: far � 88.47% (SE � .92),
mid � 81.99% (SE � 1.01), near � 78.00% (SE � .94). It is also
important to see that ratio reliably predicted accuracy on an indi-
vidual child level (Lyons, Nuerk, & Ansari, 2015). For each child,
we computed the correlation (r value) between ratio and accuracy,
where a ratio effect would be indicated by a strong negative
correlation. Average r values for the three tasks were as follows:
DC: mean r � �.735 (SE � .016), MC: mean r � �.635 (SE �
.021), NC: mean r � �.366 (SE � .024). In sum, the dot- (and
mixed-)comparison task reliably elicited ratio effects at the popu-
lation and individual levels, indicating it was indeed measuring the
AMS. Though the numeral-comparison task showed a ratio effect
when averaging across all children, this was much less reliable for
individual subjects (consistent with what was seen among children
in Grades 1–6; Lyons, Nuerk, & Ansari, 2015).

Results

For all tests, effect sizes and exact p values are given for
additional context; the significance threshold was p � .05. Raw
data can be found here: https://osf.io/uf2gb/.

Developmental Changes and Task Differences

To test Hypotheses 1a and 1b and Hypotheses 2a and 2b
(whether there is a cost of mixing formats at the outset of kinder-
garten, and how this changes over the course of the school year),
we examined longitudinal changes in performance from fall to
spring for the three numeral-comparison tasks. The AMS ¡ SNS
view predicts that mixed-comparison performance will be no
worse than dot-comparison performance in the fall (Hypothesis
1a); this difference should either remain constant or increase in the
spring (Hypothesis 2a). Hypothesis 2 predicts that this difference
should be significantly reduced at Time 2 (spring). The SNS ¡

AMS view predicts that mixed-comparison performance will be
worse than dot-comparison performance in the fall (Hypothesis
1a); this difference should either remain constant or increase in the

Figure 3. Shows results from the longitudinal models predicting growth in each task. An arrow from one task
to another indicates the partial correlation between the originating task at Time 1 and the indicated task at Time
2, controlling for all other tasks at Time 1 (as well as the various covariates). For example, the arrow from NC
to MC indicates the unique relation between Time 1 numeral comparison performance and growth in the mixed
comparison task (because Time 1 mixed comparison was included in the model). Arrows are weighted and
colored according to partial-r values (range: 0 to .5). Values in bold are actual partial-r values; values in
parentheses are corresponding p-values. Circular arrows indicate the unique relation between a given task at
Time 1 and itself at Time 2. Abbreviations: MC � mixed comparison; NC � numeral comparison; DC � dot
comparison. See the online article for the color version of this figure.
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spring (Hypothesis 2a). Hypothesis 2 predicts that this difference
should be significantly reduced at Time 2 (spring).

Data were first entered into a 3 (task: numeral, dot, mixed) 	 2
(time: fall, spring) within-subject analysis of variance (results are
summarized in Figure 2). The main effect of task was significant,
F(2, 1076) � 335.33, p � 6E-114, d � 1.58. Performance was
overall best on numeral comparisons, followed by dot compari-
sons, and performance was worst on mixed comparisons.
Numeral-comparison scores were significantly higher than were
dot-comparison scores at both time points: fall: t(538) � 8.62, p �
7E-17, d � .74; spring: t(538) � 19.53, p � 1E-64, d � 1.68.
Dot-comparison scores were significantly higher than were mixed-
comparison scores at both time points: fall: t(538) � 7.10, p �
4E-12, d � .61; spring: t(538) � 4.04, p � 6E-05, d � .35. Note
that this latter result indicates that comparing between formats was
more difficult than comparing within either symbolic or nonsym-
bolic formats. This result is thus more consistent with the view that
symbolic and nonsymbolic representations of number form disso-
ciable representation systems at the very outset of formal school-
ing, which is consistent with Hypothesis 1b but not 1a. In addition,
the difference between dot and mixed comparison was signifi-
cantly less at Time 2: F(1, 538) � 6.41, p � .012, d � .22, which
is consistent with Hypothesis 2b but not 2a. In sum, tests of both
Hypotheses 1 and 2 supported the SNS ¡ AMS view: There was
a cost of mixing symbolic and nonsymbolic formats even at the
outset of kindergarten, and this cost decreased over the course of
the school year.

With respect to characterizing change from Time 1 to Time 2 as
“growth,” it is crucial to note that the main effect of time was
significant, F(1, 1076) � 669.08, p � 2E-96, d � 2.23. All three
tasks showed significant improvement from fall to spring: NC:
t(538) � 23.73, p � 1E-85, d � 2.05; DC: t(538) � 17.60, p �
4E-55, d � 1.52; MC: t(538) � 19.59, p � 7E-65, d � 1.69.

It is also important to note that the Task 	 Time interaction was
significant, F(2, 1076) � 5.07, p � 2E-21, d � .61. Longitudinal
improvement was significantly7 greater for NC than either DC,
t(538) � 9.09, p � 2E-18, d � .78, or MC, t(538) � 6.91, p �
1E-11, d � .60, and it was significantly greater for MC relative to
DC, t(538) � 2.53, p � .012, d � .22 (equivalent to the F test
performed to test Hypothesis 2 earlier). These differences in lon-
gitudinal improvement are notable in several respects. First, they
indicate differential developmental change with respect to sym-
bolic, nonsymbolic, and mixed number processing. Second, they
argue against the notion that task improvements may have been

driven simply by familiarity with the tasks (which would predict
merely a main effect of time).

Predicting Longitudinal Growth

In this section, we tested Hypotheses 3 and 4 (what the direction
of influence between the AMS and the SNS is). According to the
AMS ¡ SNS view, dot comparison at Time 1 should be a strong
unique predictor of both mixed-comparison growth (Hypothesis
3a) and numeral-comparison growth (4a). According to the SNS
¡ AMS view, numeral comparison at Time 1 should be a strong
unique predictor of both mixed-comparison growth (Hypothesis
3b) and dot-comparison growth (4b). Finally, it is of course pos-
sible to find a bidirectional influence on growth (Hypothesis 4c).

To test these hypotheses, we assessed the degree to which
symbolic, nonsymbolic, and mixed numeral processing at the
outset of formal education (i.e., at the beginning of kindergarten)
uniquely predicted growth in one another over the course of the
school year. Unique contributions were assessed via multiple re-
gression, controlling not just for competing variables of interest
but also for several covariates of no interest: age, sex, testing
interval, absentee rates, school SES, birth location (in Canada or
not), and chance performance (see the Method section). Growth
was assessed by predicting spring (Time 2) scores after controlling
for fall (Time 1) scores.

Model results are visualized in Figure 3 (zero-order correlations
between comparison scores are given in Table 2). Arrows in Figure
3 indicate growth directionality. For instance, the arrow pointing
from DC to NC in Figure 3 denotes the degree to which dot
comparisons at Time 1 predict growth in numeral comparisons; the
arrow pointing the opposite direction denotes the degree to which
numeral comparisons at Time 1 predict growth in dot comparisons
(partial r and p values are also given; full model results can be
found in Appendix A).

From Figure 3, it is clear that early (Time 1) numeral-
comparison performance was a strong unique predictor of growth
in the other two tasks, dot comparison did not significantly predict
growth in either of the other two tasks, and mixed comparison was
a moderate predictor of growth in the other tasks. Time 1 numeral
comparison was a significantly8 stronger unique predictor of
growth in mixed comparison than Time 1 dot comparison (.317 vs.
.023; z � 4.95, p � 7E-07), which is consistent with Hypothesis 3b
but not 3a. Time 1 numeral comparison was also a significantly
stronger unique predictor of dot-comparison growth than Time 1
mixed comparison (partial rs � .284 vs. .108; z � 2.99, p � .003).

From Figure 3, it can be seen that symbolic skills are the
primary unique predictor of growth in all three tasks. Indeed, Time
1 numeral comparison was in fact a stronger unique predictor of
Time 2 mixed comparison and dot comparison than either of those
tasks at Time 1 were of themselves (numeral vs. mixed compari-
son: .317 vs. .198; z � 2.07, p � .038; numeral vs. dot comparison:
.284 vs. .147; z � 2.34, p � .019). Notably, the reverse was not

7 Here, this is reported as t tests between change scores (spring–fall),
which is equivalent to the relevant 2 	 2 interaction term.

8 This was computed by comparing partial correlations using Fisher’s z
tests. Fisher tests were chosen because, within a given model, partial rs are
by definition independent (e.g., the partial relation between x1 and y
controls for x2, and vice versa).

Table 2
Zero-Order Correlations Between the Three Comparison Tasks
at Times 1 and 2

Variable NC1 DC1 MC1 NC2 DC2 MC2

1. NC1 — .706 .738 .716 .590 .624
2. DC1 .706 — .698 .548 .533 .512
3. MC1 .738 .698 — .623 .526 .595
4. NC2 .716 .548 .623 — .737 .790
5. DC2 .590 .533 .526 .737 — .773
6. MC2 .624 .512 .595 .790 .773 —

Note. NC � numeral comparison; DC � dot comparison; MC � mixed
comparison; 1 � Time 1 (fall); 2 � Time 2 (spring). All correlations were
significant (all ps � 2E-37).
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true: Time 1 numeral comparison was a stronger predictor of itself
at Time 2 than were Time 1 mixed comparison (.443 vs. .130; z �
5.62, p � 2E-08) and Time 1 dot comparison (.443 vs. .035; z �
7.17, p � 8E-13).

Moreover, Time 1 numeral comparison asymmetrically pre-
dicted growth in the other two comparison tasks. Time 1 numeral
comparison was a stronger unique predictor of dot-comparison
growth than was Time 1 dot comparison of numeral-comparison
growth (partial rs � .284 vs. .035; z � 4.16, p � 3E-05), which is
consistent with Hypothesis 4b and not 4a (and hence inconsistent
with 4c as well). Time 1 numeral comparison was also a stronger
unique predictor of mixed-comparison growth than was the reverse
(.317 vs. .130; z � 3.21, p � .001). Time 1 mixed comparison was
a stronger unique predictor of dot-comparison growth than was the
reverse, albeit nonsignificantly so (.107 vs. .023; z � 1.37, p �
.169).

In sum, symbolic number processing at the beginning of kin-
dergarten was a stronger predictor of growth in nonsymbolic and
mixed-format processing than was the other way around. Indeed,
symbolic number scores at the beginning of the year were a
stronger unique predictor of nonsymbolic and mixed scores at the
end of the year than were even nonsymbolic and mixed scores at
the beginning of the year, respectively. Results support Hypothe-
ses 3b and 4b and are thus overall more consistent with the SNS ¡

AMS view.

Discussion

There is currently considerable discussion about the relative
influences of evolutionary and cultural factors in the development
of early numerical skills. One part of this debate centers around the
relationships between approximate, nonverbal (AMS) and exact,
symbolic (SNS) representations of number. Here we examined
several hypotheses concerning whether, in the earliest stages of
formal education, AMS abilities predict growth in SNS abilities, or
the other way around. Moreover, we did so in a manner that takes
into account the need to develop an ability to translate between the
AMS and the SNS (i.e., mixed comparison). Our data derived from
539 kindergarten children, with AMS, SNS, and mixed-comparison
skills assessed at the beginning and end of the academic year. In
this way, we provide, to the best of our knowledge, the most
comprehensive test to date of the direction of influence between
the AMS and the SNS in early formal schooling. For all four
hypotheses tested (1–4), results clearly favored the view that SNS
abilities at the beginning of kindergarten lay the foundation for
improvement in both AMS abilities and the ability to translate
between the two systems (results were consistent with Hypotheses
1b–4b and not 1a–4a). Specifically, there was a significant cost of
mixing formats present even at the outset of kindergarten, indicat-
ing an early dissociation between symbolic and nonsymbolic num-
ber systems (Hypothesis 1b). This mixing cost reduced over the
course of the school year, indicating an increasing capacity to
translate between the two systems (Hypothesis 2b). Growth in this
format-mixing was predicted by symbolic but not nonsymbolic
ability (Hypothesis 3b). And indeed, SNS ability predicted growth
in AMS ability over the course of the year but not the other way
around (Hypothesis 4b). More broadly, we conclude that, once one
acquires a basic grasp of exact number symbols, it is this exact
understanding of number (and repeated practice therewith) that in

fact predicts growth in the AMS. We speculate that one’s under-
standing of approximate, nonverbal quantities is increasingly in-
formed by one’s knowledge of and experience with exact symbolic
representations of numbers, though the precise mechanism by
which this may occur remains unknown. Candidate interpretations
and mechanisms are discussed next.

Evidence for the SNS ¡ AMS View

To identify the direction of influence between the AMS and the
SNS in early education, we examined four hypotheses. First, we
examined whether, at the outset of formal education, the AMS and
the SNS should be considered separate systems to begin with. We
found that, at the beginning of kindergarten (Time 1), scores on the
mixed-comparison task were lower than those on either the
numeral- or dot-comparison task. This suggests there is an addi-
tional cost to translating between the two formats. This result is
broadly consistent with those found by Mundy and Gilmore (2009)
and Brankaer et al. (2014). Mundy and Gilmore found in their
second experiment that children roughly 7–8 years of age strug-
gled with a mapping task (children judged which of two quantities
matched the numerosity of a target, where the target was in a
different format—symbolic or nonsymbolic—from that of the two
options): Average accuracy was 62% (chance � 50%). The same
children performed well on standard symbolic–symbolic (90.2%
accuracy) and nonsymbolic–nonsymbolic (87.3%) comparison
tasks. Because different tasks (matching vs. comparison) were
used, it is difficult to directly compare performance on the same-
format task with the mixed-format task (as by contrast we were
able to do here—note also that a direct comparison between same-
and mixed-format tasks was not a stated goal of Mundy &
Gilmore, 2009). Nevertheless, it seems that children found the
cross-format matching task relatively difficult. More recently,
Brankaer et al. found a highly similar result using similar matching
and comparison tasks in children approximately 7 and 9 years old.

Taken together with the current results (see especially Figure 2
and tests of Hypotheses 1 and 2 regarding the cost of mixing
formats), it seems that the ability to translate between symbolic
and nonsymbolic numerical formats is nontrivial, even in children
as young as those at the start of kindergarten. This suggests that
children’s understanding of number symbols may emerge indepen-
dently of the AMS (for a similar proposal, see, e.g., Carey, 2011;
Le Corre & Carey, 2007). At minimum, our results suggest that the
SNS is only indirectly linked to the AMS early in development,
which is difficult to reconcile with the view that approximate
representations of quantity serve as the semantic building blocks of
their symbolic counterparts (e.g., Dehaene, 2008; Feigenson et al.,
2004, 2013; Piazza, 2010; Piazza et al., 2007; Verguts & Fias,
2004). Furthermore, this result is in direct contrast to the prediction
made by Lyons et al. (2012) that the dissociation between sym-
bolic and nonsymbolic numerical representations emerges only
later in development with increasing exposure to formal instruc-
tion with number symbols.

Indeed, we also found that the cost of translating between the
AMS and the SNS lessened by the end of kindergarten. This
surprising result is in fact broadly consistent with the notion that
people’s understanding of nonsymbolic quantities is increasingly
shaped by (and thus tied to) their understanding of symbolic
quantities (and is also consistent with results found by Mix, 2008).
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Of course, one could alternatively interpret the reduced mixing
cost at Time 2 by positing the reverse: Although perhaps initially
distinct, the AMS nevertheless plays a role in shaping the SNS
once formal schooling begins. Thus, it is crucial to examine
competing longitudinal predictions of growth in the ability to
translate between the SNS and the AMS: Is numeral comparison or
dot comparison at the beginning of kindergarten a better unique
predictor of growth in mixed comparison over the course of the
school year?

The longitudinal results shown in Figure 3 clearly support the
view that it is the numeral comparison that uniquely predicts
growth in mixed comparison and not dot comparison (hence con-
sistent with Hypothesis 3b; see also Figure 3; with partial rs of
.317 vs. .023, respectively). Here again, results clearly support the
view that early SNS skills predict growth in one’s ability to
translate between the SNS and the AMS. If children’s understand-
ing of AMS-based quantities is increasingly in terms of their grasp
of SNS-based quantities, this is exactly what one would expect.
We found indirect evidence that, consistent with this view, chil-
dren were more likely to convert dot arrays to symbolic form than
numerals to approximate magnitudes to complete the mixed-
comparison task. Systematic underestimation when converting a
dot array into a symbolic representation (via noncounting estima-
tion; Izard & Dehaene, 2008) is expected and has been shown in
adults to lead to poorer performance in a mixed-comparison task
when the dot array is numerically larger than the numeral relative
to the opposite (Lyons et al., 2012). This is exactly what we found
here: Children were less accurate on mixed-comparison trials
where the dot array was numerically greater than the numeral
(dots � numeral: 68.9% correct, SE � 1.2; numeral � dots: 80.5%
correct, SE � 1.0; p � .001). Even in kindergarten, children seem
more inclined to process magnitudes in symbolic form, consistent
with the notion that their understanding of the AMS may be
increasingly influenced by their grasp of number symbols. It is also
worth noting that the ability to map between symbolic and non-
symbolic quantities is a unique predictor of more complex math
skills in 6- to 8-year-olds—a result that holds over and above the
variance captured by more standard symbolic and nonsymbolic
tasks (Mundy & Gilmore, 2009; see also Brankaer et al., 2014).
Hence, the ability to map between the AMS and the SNS is both
nontrivial and potentially key to the development of math abilities
more generally. However, contrary to the currently dominant view,
our results suggest that this mapping ability may be facilitated
primarily by children’s increasing proficiency with numerical
symbols and not approximate magnitudes.

The final hypothesis we tested concerns whether AMS skills at
the beginning of the year predict growth in SNS skills over the
course of the year (AMS ¡ SNS; Hypothesis 4a), vice versa (SNS
¡ AMS; Hypothesis 4b), or both (AMS ↔ SNS; Hypothesis 4c).
Even if the AMS and the SNS are distinct representational sys-
tems, it is possible for the two systems to influence one other. It is
thus important to know whether this is the case and, if so, begin to
accrue evidence regarding the direction of influence. Again, our
results clearly supported the SNS ¡ AMS view (Hypothesis 4b).
Numeral-comparison scores at the beginning of kindergarten were
a stronger unique predictor of growth in dot-comparison scores
over the course of the year than was the other way around (from
Figure 3; partial rs � .284 vs. .035, respectively). Indeed, numeral
comparison (Time 1) was a better unique predictor of dot com-

parison than dot comparison was of itself over the course of the
year (from Figure 3; partial rs � .284 vs. .147, respectively). This
indicates the SNS provides a stronger influence on the develop-
ment (at least over the course of kindergarten) of the AMS than
does the other way around.

It is important to note that this result is not without precedent.
Indeed, this result may in some ways be seen as a replication and
extension of two previous studies. In preschoolers, Mussolin et al.
(2014) showed that symbolic comparison predicted growth in
nonsymbolic comparison but not the other way around. Matejko
and Ansari (2016) recently showed a similar result in first graders.
It is worth noting that the current sample included roughly an order
of magnitude more participants (539 vs. 57 in Mussolin et al.,
2014, and 30 in Matejko & Ansari, 2016). Moreover, we also
controlled for children’s ability to map between the two formats
(mixed-comparison performance), and we tested several related
hypotheses concerning the ability to map between formats as well.
Furthermore, in kindergarteners, Sasanguie, et al. (2014) showed
no significant correlation between nonsymbolic comparison per-
formance and symbolic comparison performance 6 months later
(the opposite relation could not be assessed, because the authors
did not collect symbolic comparison scores at the first time point).
Crucially, these studies all clearly converge on the conclusion that
it is early symbolic numerical skills (part of the SNS) that facilitate
improvement in early nonsymbolic magnitude skills (part of the
AMS) and not the other way around. This conclusion is further
strengthened by the results testing Hypotheses 1–3 (discussed
previously) indicating that one’s ability to translate between the
SNS and the AMS is both nontrivial and likely facilitated by the
fact that approximate magnitudes come to be understood primarily
in terms of their symbolic counterparts.

Potential Mechanisms

In the previous section, we reviewed evidence—from both
the current study and previous work—that supports the notion that
the SNS emerges independently from the AMS and that it is the
former that primarily predicts growth in the latter (and not the
other way around). Although the evidence for the SNS ¡ AMS
view outweighs that of the AMS ¡ SNS view, the mechanism(s)
by which the SNS may influence the AMS remain largely under-
specified. In this section we outline two potential mechanisms.

One possibility suggested by Piazza et al. (2013) as well as
Mussolin et al. (2016) is that the SNS directly shapes the AMS by
improving the representational precision of the latter. Symbols,
which tend to be more precise than are their analog counterparts,
can help to “sharpen” the nonsymbolic analog magnitude (AMS)
representations. These sharper representations then permit more
precise discrimination between nonsymbolic quantities, which in
turn predicts improved performance on something like a dot-
comparison task. On the other hand, Piazza et al. and Mussolin et
al. still posited a direct linkage between symbolic and nonsymbolic
representations—that is, they are underpinned by the same kind of
representation—and indeed the authors suggested a bidirectional
influence between the SNS and the AMS. The unidirectionality of
longitudinal results here (in particular the lack of evidence sup-
porting the AMS ¡ SNS direction; see Figure 3) speak against this
assumption, as do our results showing a cost of mixing formats
even at the outset of kindergarten (see Figure 2). That said, our
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results cannot speak directly to children younger than kindergar-
teners, for whom some sort of link may have been established.

An alternative perspective is to assume that the SNS and the
AMS are completely distinct systems from the outset of develop-
ment. This would be more consistent with the mixing costs seen
here (see Figure 2), the work reviewed earlier by Mundy and
Gilmore (2009) and Brankaer et al. (2014), and a growing body of
neuroimaging studies showing a distinction between symbolic and
nonsymbolic numerical representations, at least in adults (Bulthé et
al., 2014, 2015; Damarla et al., 2016; Damarla & Just, 2013;
Lyons, Ansari, & Beilock, 2015). According to this view, interre-
lations among the comparison tasks are due primarily to near-
transfer of learning to do the task. The large directional asymmetry
is thus simply a function of having more room for growth in the
purely symbolic (NC) case. With formal education, children would
be expected to improve rapidly on the symbolic comparison task,
which can in some ways be seen as having the highest “ceiling”
because symbols can be infinitely precise and allow for a rich set
of conceptual associations. Indeed, the steepest growth curve in the
current data set was seen for the symbolic (NC) task (see Figure 2).
According to this view, children with strong symbolic skills are
expected to improve most dramatically on the NC task (consistent
with the large positive correlation between Time 1 and Time 2
NC), and it is this improvement in learning to perform one type of
numerical comparison task that transfers to the others. Unlike the
interpretation outlined in the paragraph previous, this view does
not require any direct relation between the SNS and the AMS,
because mapping between symbolic and analog representations is
not required for the SNS to develop. Instead, the SNS develops
independently from the AMS; part of this development permits
improved symbolic comparison performance, which transfers at
the task level to the mixed- and dot-comparison tasks (for a similar
suggestion regarding how acquisition of number–word meanings
might influence the AMS, see Shusterman et al., 2016).

Castles and Coltheart (2004) made a related argument in the
discussion of the literature on the predictors of early reading skills.
This argument rests primarily on the notion that a given task does
not equal a given process (or representation). Showing that per-
formance on a symbolic number comparison task predicts im-
provement on a nonsymbolic comparison task does not necessarily
imply that SNS representations are fundamentally shaping AMS
representations; instead, it may mean that learning how to perform
the symbolic task changes how one does the nonsymbolic version
of the task. In addressing the surprising finding that reading ability
predicts improvement in scores on a phonological awareness task,
Castles and Coltheart wrote, “The acquisition of reading skills
does not actually change the level or nature of phonological
awareness itself. Rather, it influences the way in which children
perform phonological awareness tasks” (p. 80). In the current case,
learning to process numbers symbolically may change how one
does tasks that involve nonsymbolic magnitudes as stimuli. That
said, precisely how this change occurs and what it may or may not
imply for approximate magnitude representation remains a topic
for further research.

Nevertheless, we do not believe our results are merely a fluke
of—that is, limited to—number comparison tasks, because related
results can be found elsewhere in the numerical literature. For
instance, children who did not yet have the cardinality principle
were completely at chance on a nonsymbolic comparison task

(Negen & Sarnecka, 2015). The notion here is that only when
children have an understanding of the symbolic cardinal label of a
set do they understand how to perform a nonsymbolic comparison
task. In addition, Mix (2008) tested 3-year-olds’ ability to match
sets of objects in terms of their cardinality (is one set of objects
numerically equal to another set of objects of a different type). Mix
found that children with knowledge of the correct symbolic (ver-
bal) cardinal labels of the sets involved (e.g., “three,” “four”)
performed significantly better on a range of nonsymbolic matching
tasks. This suggests that children’s ability to compare nonsymbolic
quantities is linked to their understanding of the cardinal meaning
of number words—which are arguably the first number–symbols
most children learn (for a review, see, e.g., Mix et al., 2002).
Similarly, Shusterman and colleagues (2016) found longitudinal
evidence that children’s acquisition of cardinal understanding of
number words preceded an abrupt improvement in performance on
AMS comparison acuity (see also Shusterman et al., 2016, for a
detailed discussion of the potential mechanisms by which verbal
symbols–number words might impact AMS processing). In sum,
these results dovetail with those of the current study to suggest that
knowledge of and proficiency with the symbolic number system
impacts how one processes approximate, analogue magnitudes.
Whether acquisition of a symbolic number system directly impacts
approximate magnitude representation or the broader frame-
work—that is, system—by which these magnitudes are (or are not)
brought to bear in solving specific tasks remains an interesting
avenue for future research.

A point of concern is that processing of nonsymbolic quantities
in the subitizing range (1–4) differs from processing of approxi-
mate magnitudes outside this range (e.g., Revkin, Piazza, Izard,
Cohen, & Dehaene, 2008). In addition, some researchers have
suggested that if there is a critical link between symbolic and
nonsymbolic representations of quantity, this link is primarily
limited to quantities within the subitizing range (e.g., Carey, 2011).
This has two implications for the current work. On the one hand,
our measure of the AMS may have been “contaminated” by
inclusion of trials that use numbers in the subitizing range. In
particular, the result that numeral comparison significantly pre-
dicted growth in dot comparison may have been inflated by the
inclusion of subitizable quantities (a similar argument could be
made for the bidirectional relation between numeral and mixed
comparisons). On the other hand, the fact that dot comparison did
not predict growth in either of the other comparison tasks perhaps
speaks against this account. Regardless, we felt it important to test
whether the regression results in Figure 3 (and hence our conclu-
sions with respect to Hypotheses 3 and 4) would differ substan-
tially if we limited analyses to only trials comprising stimuli
outside the subitizing range (the same limits were imposed on
predictors from all three tasks so as not to bias reliability due to the
number of trials and ensure that any relations would be exclusive
to quantities outside the subitizing range across the board; results
are reported in Appendix B). Results show that numeral compar-
ison remained a strong predictor of growth in the other two tasks
and that neither dot nor mixed comparison were significant pre-
dictors of either one another or numeral comparison. This suggests
that the influence of the SNS on the AMS extends beyond the
subitizing range, and the asymmetry in the influence between the
two systems, may be even stronger for larger numbers. Consistent
with the earlier discussion (and with Shusterman et al., 2016), the
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relation between the SNS and the AMS is more likely to operate
via more general aspects of the respective systems, though further
work is certainly needed.

Reconciling Current Results With Previous Work

In the introduction, we indicated that considerable attention has
been paid to the view that the AMS plays a crucial role as the
foundation for and scaffold of the SNS (Dehaene, 1997, 2008;
Feigenson et al., 2004, 2013; Gallistel & Gelman, 2000; Piazza,
2010). Our results are inconsistent with this view; hence, in this
section, we briefly examine how our results may potentially be
reconciled with previous evidence that has been interpreted in
favor of the AMS ¡ SNS view. First, numerous studies have
shown that the precision of an individual’s AMS is predictive of
SNS abilities (for a review and meta-analysis, see Chen & Li,
2014). Nearly all of these studies are cross-sectional in nature, so
causal direction cannot be inferred. Moreover, of studies that have
examined the relation between AMS and SNS tasks at different
time points, few if any include control for the outcome at Time 1
(e.g., Libertus, Feigenson, & Halberda, 2011; Mazzocco, Feigen-
son, & Halberda, 2011; Wang, Odic, Halberda, & Feigenson,
2016). Inclusion of this control is crucial because it allows one to
genuinely predict growth in the outcome. For instance, if one uses
performance on a dot-comparison task at Time 1 to predict per-
formance on an arithmetic task at Time 2, the direction of influ-
ence is still ambiguous. However, if one controls for arithmetic
performance at Time 1, then the remaining variance in arithmetic
at Time 2 accounted for by dot comparison at Time 1 can be
attributed to only what has changed in the arithmetic task between
Times 1 and 2; hence, one can infer the direction of influence. We
included this crucial control here, as did Mussolin et al. (2014) and
Matejko and Ansari (2016). In all three cases, the direction of
influence was found to be from symbolic to nonsymbolic tasks and
not the other way around.

Another line of evidence where causality can be more readily
inferred comes from training studies showing that nonsymbolic
arithmetic training predicts growth in symbolic arithmetic scores
(Hyde et al., 2014; Park & Brannon, 2013, 2014) and that intensive
math training does not seem to improve AMS precision (Sullivan,
Frank, & Barner, 2016). This certainly suggests that there are
instances where nonsymbolic numerical processing can influence
SNS processing, though the results mentioned earlier do not appear
to extend to training on nonsymbolic comparison (Park & Bran-
non, 2014). Regardless, it is certainly possible that approximate
arithmetic performance at the outset of kindergarten might predict
growth in symbolic number skills. Furthermore, it is important to
emphasize that our data did not allow us to examine whether dot
comparison performance predicts growth in tasks that tap the AMS
more directly than do symbolic or mixed comparison, such as
nonsymbolic arithmetic.

Finally, it is worth pointing out that in most cases where tasks
measuring the AMS (e.g., dot comparison) show a zero-order
correlation with symbolic tasks (e.g., symbolic arithmetic), this
relation is often completely accounted for by a comparable
symbolic task (e.g., numeral comparison; for empirical results,
see, e.g., Göbel, Watson, Lervåg, & Hulme, 2014; Lyons, Price,
Vaessen, Blomert, & Ansari, 2014; for a recent meta-analysis
and review, see, respectively, Schneider et al., 2017, and Merk-

ley & Ansari, 2016). In other words, symbolic numerical tasks
tend to be more strongly related to one another than to non-
symbolic numerical tasks. This is broadly consistent with a
strong distinction between the SNS and the AMS, which is also
consistent with the results here. Moreover, the longitudinal
results in the current study suggest that what relation does exist
between symbolic and nonsymbolic numerical tasks is reflec-
tive primarily of the SNS bearing influence on the AMS and not
the other way around.

Conclusion

In sum, we tested several hypotheses concerning the nature and
direction of the relation between approximate, nonverbal (AMS)
and exact, symbolic (SNS) representations of number. Results
converged to show that the two systems are relatively distinct even
at the outset of kindergarten. Results also clearly indicated that the
SNS unidirectionally predicts growth in the AMS. This asymme-
try—in particular the lack of evidence for an AMS ¡ SNS
relation—is in direct contrast to the view that the more evolution-
arily ancient AMS underpins the culturally acquired SNS. Instead,
it appears that culturally acquired number symbols may influence
how kindergarteners process nonsymbolic quantities. The precise
mechanism by which this process occurs remains unknown. Num-
ber symbols may directly change nonsymbolic representations of
magnitude, or number symbols may simply afford greater oppor-
tunity for improvement in quantity comparison tasks more gener-
ally, which transfers to nonsymbolic versions of the task as well.
Future work may help elucidate the precise mechanisms. Regard-
less, the current results may serve to reorient theories about the
progression of numerical development especially in the early
stages of formal education.
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Appendix A

Full Longitudinal Regression Results

Appendix A gives full regression results for the three regression
models used to test the longitudinal hypotheses. Note that these

models were used to produce the partial r values (and correspond-
ing p values) depicted in Figure 3.

Table A1
Outcome: Numeral-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 .544 .048 11.377 6E-27 .716 .444
DC1 .063 .077 .813 .416 .548 .035
MC1 .232 .077 3.005 .003 .623 .130
Sex �1.357 .878 �1.546 .123 �.050 �.067
Absent % 2.521 6.166 .409 .683 �.053 .018
Test interval .036 .032 1.121 .263 .034 .049
Born in Canada 1.478 1.346 1.099 .272 .014 .048
School SES .021 .481 .045 .964 .216 .002
NC1 � chance �2.824 1.860 �1.519 .129 .303 �.066
DC1 � chance �.627 2.430 �.258 .796 .170 �.011
MC1 � chance .910 1.749 .520 .603 .325 .023
NC2 � chance 21.731 3.242 6.702 5E-11 .318 .281
Constant �8.928 6.857 �1.302 .193
Adjusted R2 .564
Residual df 526

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.

Table A2
Outcome: Dot-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 .257 .038 6.805 3E-11 .590 .284
DC1 .209 .061 3.413 7E-04 .533 .147
MC1 .151 .061 2.475 .014 .526 .107
Sex .816 .691 1.181 .238 .025 .051
Absent % �.181 4.867 �.037 .970 �.042 �.002
Test interval �.005 .025 �.215 .830 �.029 �.009
Born in Canada .744 1.062 .700 .484 .027 .031
School SES �.310 .380 �.814 .416 .166 �.035
NC1 � chance �1.651 1.445 �1.142 .254 .210 �.050
DC1 � chance �.570 1.905 �.299 .765 .180 �.013
MC1 � chance �2.169 1.377 �1.575 .116 .185 �.069
NC2 � chance 19.671 2.865 6.867 2E-11 .303 .287
Constant �1.898 5.832 �.325 .745
Adjusted R2 .430
Residual df 526

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.

(Appendices continue)
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Appendix B

Full Regression Results (Large Items Only)

Here we test whether inclusion of trials involving smaller quan-
tities may have inflated the predictive capacity of the mixed and
numeral comparison tasks and may have deflated the predictive
capacity of the dot comparison task. We tested this by including
only trials where all quantities were outside the subitizing range

(�5) for all three critical predictors (the three comparison tasks at
Time 1). Results in the tables show that they did not. Tables are
organized in the same manner as in Appendix A for easy compar-
ison. Slight variations in degrees of freedom are due to a few
children not having attempted any qualifying trials.

Table A3
Outcome: Mixed-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 .303 .039 7.675 8E-14 .624 .317
DC1 .034 .064 .525 .600 .512 .023
MC1 .295 .064 4.636 4E-06 .595 .198
Sex �1.321 .722 �1.829 .068 �.069 �.079
Absent % �2.897 5.090 �.569 .570 �.061 �.025
Test interval �.024 .026 �.910 .363 �.047 �.040
Born in Canada 1.555 1.110 1.401 .162 .052 .061
School SES �.298 .397 �.751 .453 .173 �.033
NC1 � chance �2.860 1.514 �1.889 .059 .223 �.082
DC1 � chance 1.144 1.993 .574 .566 .180 .025
MC1 � chance �1.563 1.444 �1.082 .280 .272 �.047
NC2 � chance 16.363 2.246 7.284 1E-12 .349 .303
Constant 3.783 5.596 .676 .499
Adjusted R2 .479
Residual df 526

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.

Table B1
Outcome: Numeral-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 1.494 .099 15.134 3E-43 .675 .551
DC1 .050 .171 .295 .768 .236 .013
MC1 .224 .157 1.426 .154 .412 .062
Sex �.680 .932 �.730 .466 �.051 �.032
Absent % �2.765 6.533 �.423 .672 �.052 �.018
Test interval .010 .034 .309 .758 .034 .013
Born in Canada .928 1.412 .657 .512 .014 .029
School SES .667 .500 1.334 .183 .217 .058
NC1 � chance .699 1.901 .368 .713 .304 .016
DC1 � chance 2.102 2.409 .872 .383 .170 .038
MC1 � chance 3.970 1.655 2.399 .017 .325 .104
NC2 � chance 24.323 3.401 7.151 3E-12 .318 .298
Constant 21.216 6.662 3.185 .002
Adjusted R2 .519
Residual df 524

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.

(Appendices continue)
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Table B3
Outcome: Mixed-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 .908 .082 11.140 5E-26 .580 .438
DC1 .074 .141 .526 .599 .233 .023
MC1 .354 .130 2.728 .007 .415 .118
Sex �.899 .767 �1.172 .242 �.069 �.051
Absent % �6.336 5.392 �1.175 .241 �.061 �.051
Test interval �.046 .028 �1.648 .100 �.046 �.072
Born in Canada 1.183 1.165 1.015 .310 .052 .044
School SES .118 .413 .286 .775 .173 .013
NC1 � chance �.473 1.545 �.306 .760 .223 �.013
DC1 � chance 2.656 1.973 1.346 .179 .180 .059
MC1 � chance 1.573 1.364 1.153 .249 .272 .050
NC2 � chance 18.582 2.351 7.902 2E-14 .349 .326
Constant 25.652 5.489 4.673 4E-06
Adjusted R2 .426
Residual df 524

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.

(Appendices continue)

Table B2
Outcome: Dot-Comparison Task at Time 2

Predictor b SE t p r0 rp

NC1 .824 .077 10.657 4E-24 .548 .422
DC1 .329 .134 2.461 .014 .268 .107
MC1 .172 .123 1.395 .164 .353 .061
Sex 1.413 .728 1.942 .053 .028 .085
Absent % �1.752 5.116 �.342 .732 �.036 �.015
Test interval �.024 .026 �.899 .369 �.029 �.039
Born in Canada .161 1.106 .146 .884 .027 .006
School SES .201 .393 .512 .609 .168 .022
NC1 � chance .625 1.461 .428 .669 .211 .019
DC1 � chance 2.161 1.874 1.153 .249 .181 .050
MC1 � chance .180 1.285 .140 .889 .186 .006
NC2 � chance 22.353 2.978 7.505 3E-13 .304 .312
Constant 21.319 5.210 4.092 5E-05
Adjusted R2 .379
Residual df 524

Note. NC � numeral comparison; DC � dot comparison; MC � mixed comparison; 1 � Time 1 (fall); 2 � Time 2 (spring); SES � socioeconomic status.
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Appendix C

Correcting Longitudinal Regression Results for Variation in Task Reliability

Here we report the critical partial correlations shown in Figure
3 but recomputed after disattenuating relations between the critical
variables with respect to their relative reliabilities (see Figure C1).
In the main text, we ran three regression analyses—one with each
of the three comparison tasks at Time 2 as the dependent variable.
The three comparison tasks at Time 1 were always the critical
independent variables. We computed the partial correlation matrix
between the four critical variables—for example, Time 1 numeral
comparison, Time 1 dot comparison, Time 1 mixed comparison,

Time 2 numeral comparison—after removing the influence of all
covariates. Note that at this stage, the correlations between critical
variables were residualized only with respect to the covariates and
not yet with respect to one another. These correlation matrices
were then disattenuated: r=(xy) � r(xy)/
(xr 	 yr), where r(xy) is
the correlation between variables x and y, and xr and yr are the
reliability estimates for x and y, respectively (e.g., Murphy &
Davidshofer, 2004). Reliability values were taken from the main
text (see the Reliability section). Because reliability was less than
perfect (�1) for all tasks, this meant that correlations would be
expected to increase in all cases; crucially, however, those involv-
ing variables with lower reliability (e.g., between DC and MC)
would be expected to increase more so than those involving higher
reliability. To residualize the critical variables with respect to one
another (i.e., to compute unique contributions of each task at Time
1 to growth in the dependent variable (as is depicted in Figure 3),
we “reduced” the correlation using a pseudo-inverse procedure
that removes all mutual influence (resulting in a matrix of partial
correlations akin to what one would get from a multiple regression
(Opgen-Rhein & Strimmer, 2007).
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[a] Outcomes   Par�al-r 
0.5 

-0.2 

  NC Time-2 DC Time-2 MC Time-2 
Predictors NC Time-1 0.443 0.284 0.317 

DC Time-1 0.035 0.147 0.023 
MC Time-1 0.130 0.107 0.198 

[b]  Outcomes 
  NC Time-2 DC Time-2 MC Time-2 

Predictors NC Time-1 0.489 0.329 0.352 
DC Time-1 -0.100 0.168 -0.174 
MC Time-1 0.102 -0.009 0.280 

Figure C1. Section [a] gives the partial correlations depicted in Figure 3.
Section [b] gives these correlations computed only after the original
relations between variables were first disattenuated based on relative
reliabilities. The central results reported in the main text remain largely
unchanged. See the online article for the color version of this figure.
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