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Numerical ratio effects are a hallmark of numerical comparison tasks. Moreover, ratio effects have been used
to draw strong conclusions about the nature of numerical representations, how these representations develop,
and the degree to which they generalize across stimulus formats. Here, we compute ratio effects for 1,719
children from Grades K–6 for each individual separately by computing not just the average ratio effect for
each person, but also the variability and statistical magnitude (effect-size) of their ratio effect. We find that
individuals’ ratio effect-sizes in fact increase over development, calling into question the view that decreasing
ratio effects over development indicate increasing representational precision. Our data also strongly caution
against the use of ratio effects in inferring the nature of symbolic number representation. While 75% of
children showed a statistically significant ratio effect for nonsymbolic comparisons, only 30% did so for
symbolic comparisons. Furthermore, whether a child’s nonsymbolic ratio effect was significant did not predict
whether the same was true of their symbolic ratio effect. These results undercut the notions (a) that individuals’
ratio effects are indicative of representational precision in symbolic numbers, and (b) that a common process
generates ratio effects in symbolic and nonsymbolic formats. Finally, for both formats, it was the variability
of an individual child’s ratio effect (not its slope or even effect-size) that correlated with arithmetic ability.
Taken together, these results call into question many of the long-held tenets regarding the interpretation of
ratio effects—especially with respect to symbolic numbers.
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Numerical comparison tasks, in which the participant decides
which of two numerical stimuli represents the greater quantity, have
been a mainstay in the field of numerical cognition for nearly half a
century (Moyer & Landauer, 1967), and have significantly informed

current thinking about the nature and development of numerical
processing. Numerical comparison tasks are presented with either
symbolic (e.g., Arabic numerals) or nonsymbolic (e.g., dot arrays)
representations of numerical quantity. It has long been recognized that
the numerical ratio between the two stimuli is an important predictor
of performance on these tasks: when the ratio is closer to 1, perfor-
mance tends to be worse (typically, longer response-times and higher
error-rates; e.g., Moyer & Landauer, 1967; Buckley & Gillman,
1974). This relation between ratio and performance (hereafter, simply
“ratio effect”) has been a staple assumption for many number re-
searchers, and its ubiquity is often all but taken for granted.1

Of particular interest is the fact that ratio effects have been used
to draw major theoretical conclusions about the nature of number

1 Here it is worth pointing out that many studies compute instead a close
cousin of the ratio effect, referred to as the “distance effect” (where
distance � |n1 � n2|). It is important to note that distance and ratio are closely
related. For example, for the range 1 to 10 (exhaustive sampling of all

nonequal combinations), where distance � |n1 � n2|, and ratio �
min�n1, n2�
max�n1, n2�

,

distance and ratio are correlated at R2 � .71. That said, we prefer ratio here
over distance because the former implicitly takes into account the average size
of the two numbers in addition to the difference between them.
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representation (Dehaene, 1997, 2008; Dehaene & Changeux, 1993;
Feigenson et al., 2004; Halberda & Feigenson, 2008; Nieder &
Dehaene, 2009; Verguts & Fias, 2004; though see also Verguts et
al., 2005; van Opstal et al., 2008, for alternative explanations in
certain cases). Nearly all of these conclusions hinge on the notion
of representational precision. Specifically, individual numbers are
thought to be represented in an overlapping or interfering manner
whereby the degree of overlap or interference systematically in-
creases as a function of the ratio between the numbers in question
(Dehaene & Changeux, 1993; Nieder & Dehaene, 2009; Verguts &
Fias, 2004). In this view, the ratio effect is an index of this
underlying precision: a smaller ratio effect indicates a more precise
underlying representation, and a larger ratio effect indicates a less
precise representation.

From this assumption in turn, at least three major claims have
been made regarding the theoretical import of numerical ratio
effects. First, the magnitude of ratio effects tends to decrease over
development, which has been interpreted as evidence for increas-
ing precision over development of the underlying numerical rep-
resentations (e.g., Halberda & Feigenson, 2008; Holloway & An-
sari, 2009; Sekuler & Mierkiewicz, 1977). Second, both symbolic
and nonsymbolic comparisons have been shown to yield ratio
effects, a fact that has been used to argue that the two formats are
derived from a common underlying representation (e.g., Dehaene,
2008). Third, individual differences in distance and ratio effects
have recently become popular correlates for other, typically more
complex numerical tasks such as mental arithmetic and math
achievement (e.g., Bonny & Lourenco, 2013; Bugden et al., 2012;
De Smedt et al., 2009; Feigenson et al., 2013; Fuhs & McNeil,
2013; Halberda et al., 2008, 2012; Holloway & Ansari, 2009;
Libertus et al., 2011; Lonnemann et al., 2011; Lyons & Beilock,
2011; Mazzocco et al., 2011; Piazza et al., 2010; Sasanguie et al.,
2012). These studies have found that smaller distance and ratio
effects are associated with relatively higher performance on stan-
dardized test of arithmetic. The interpretation of such a relation-
ship is that smaller ratio/distance effects represent more precise
representations of numerical magnitude, which in turn are associ-
ated with relatively better performance on formal tests of arithme-
tic/math achievement.

Given the central position ratio effects take in shaping current
theoretical accounts of numerical representation, its development,
and potential implications for math education (e.g., De Smedt et
al., 2013), a deeper characterization of these effects is warranted.
In other words, just how valid are these inferences about number
representation based on the observation of ratio effects? Current
methods for assessing ratio (and related) effects typically rely on
an individual’s average ratio effect (i.e., the raw slope, or the raw
difference between “hard” and “easy” ratios), and then compute
population level statistics based on this average. Note that this
approach implicitly takes the view that there is some underlying
principle or tendency that governs human behavior (ratio drives
comparison performance), and individual variation around this
central governing tendency is essentially noise. For this to be valid,
however, it is crucial to obtain evidence that this principle is
indeed influencing a given individual’s performance to begin with.
More concretely, as noted above, researchers have interpreted
small ratio effects as evidence for highly precise numerical repre-
sentation. Another interpretation, however, is that ratio has no
reliable influence over some or the majority of individuals’ per-

formance to begin with. Notice that from an individual differences
perspective in particular, these two interpretations yield fundamen-
tally different conclusions with respect to underlying cognitive
ability: does a small ratio effect indicate high numerical precision,
or the absence of the influence of ratio altogether? This is of
particular relevance when considering ratio effects as correlates of
other measures of numerical ability such as math scores. If the
majority of individuals do not show meaningful ratio effects, then,
strictly speaking, can we really distinguish these individuals’ ratio
“effects” from random noise? In that case, one might be better off
using a simpler measure of performance such as overall accuracy
or response-time (as has been suggested by Inglis & Gilmore,
2014).

To address this issue, we computed not only each individual’s
ratio effect (slope of the relation between ratio and response
times), but also the variability for each individual of that slope. For
every child, we can then assess whether they show a statistically
meaningful ratio effect (specifically, the corresponding effect-size,
d). We examined this in a large cross-sectional sample of over
1,700 Dutch children (Grades K–6, n � 200 in each grade). This
in turn allowed us to estimate just how prevalent the influence of
ratio is on numerical comparison performance. In other words, are
individuals who fail to show a reliable ratio effect the exception
(whose ratio effects can and should be treated as noisy deviations
from a central tendency), or is it the other way around? If the
majority of individuals show little or no evidence that ratio influ-
ences their comparison performance, then perhaps the correct
interpretation of a “small” ratio effect is that ratio is of little
relevance for understanding or predicting performance in that
individual. Moreover, this would give pause when making the
assumption that ratio effects index something meaningful about
representation. In this way, we essentially use information about
the influence of ratio on performance at the individual level to
examine the validity of inferences about ratio effects at the pop-
ulation level.

By measuring the variability and statistical effect-size of ratio
effects, we can also examine how each of these measures varies
over development, which in turn allows us to examine more
carefully previous statements about greater representational preci-
sion in older versus younger children (e.g., Halberda & Feigenson,
2008; Holloway & Ansari, 2009; Sekuler & Mierkiewicz, 1977). If
decreasing ratio effects are accompanied by decreasing variability
in performance in general, one might in fact see ratio effect-sizes
stay the same or even increase over development—indicating
numerical ratio actually has greater influence over comparison
performance in older children. This in turn might lead us to
question the logic behind directly linking the magnitude of indi-
viduals’ ratio effects and developmental change in their underlying
representational precision.

Similarly, we can more carefully examine the view that ratio
effects index similar representations or processes across symbolic
and nonsymbolic formats. Under the assumptions (a) that ratio
effects are the central underlying effect (i.e., failure to show a ratio
effect is the exception), and (b) that symbolic and nonsymbolic
ratio effects arise from the same source, then an individual show-
ing a statistically meaningful effect in one format should be more
likely to do so in the other format. Or, if we assume that little can
be learned from those whom fail to show a meaningful effect and
restrict our analyses to just those individuals who do show a
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statistically meaningful effect, then the magnitudes of at least these
individuals’ ratio effects should be correlated across formats. On
the other hand, given the large sample size here, failure to show
either of the above results would cast strong doubt on the notion
that symbolic and nonsymbolic ratio effects should be thought of
as indexing related underlying processes. This latter result would
be consistent with a growing body of behavioral and neural evi-
dence that has called into question the link between symbolic and
nonsymbolic number representations (Bulthé, De Smedt, & Op de
Beeck, 2014; Damarla & Just, 2013; Lyons et al., 2012; Lyons,
Ansari, & Beilock, 2015).

With respect to the relation between ratio effects and other
forms of numerical processing—such as math scores, recent stud-
ies cast doubt on whether representational precision is the correct
explanation for this relation. Inglis and Gilmore (2014) showed
that simple accuracy across all trials is a more robust correlate of
math scores than derivations based on ratio (for a review of these
issues, see Dietrich et al., 2015). In addition, Park et al. (2014)
recently showed that training on nonsymbolic arithmetic but not
nonsymbolic comparison led to improvements in symbolic math
scores. Both studies indicate that factors beyond basic representational
precision drive the link between basic numerical tasks and more
complex math ability. The Inglis and Gilmore (2014) and Park et al.
(2014) results suggest that the link between math and basic number
processing may not be driven by representational precision per se, but
perhaps some other more general mechanism. Here we can extend the
Inglis and Gilmore (2014) results by examining whether, for example,
ratio effect-sizes or simple overall mean performance better predict
standardized arithmetic scores.

Finally it is worth noting that the analytical approach adopted
here is not without precedent: work on other well-known numer-
ical processing effects has shown the importance of taking into
account how much an individual shows variation in the effect in
question. For instance, Nuerk et al. (2004) examined developmen-
tal trends in the unit-decade compatibility effect (when comparing
two two-digit symbolic numbers, individuals tend to be slower and
more error-prone when the ones and tens digits give incongruent as
opposed to congruent information). After taking into account each
individual’s variability in as well as the average of their compat-
ibility effect, Nuerk et al. (2004) showed that compatibility effects
actually increased over development. In another example, space-
number-association-of-response-code (SNARC) effects are usu-
ally computed using raw slope estimates for each participant (b1).
Tzelgov et al. (2013) instead recommend computing SNARC
effects using correlation coefficients, which take into account the
variability of and individual’s SNARC slope as well as the slope
itself (b1), and are directly related to effect-sizes expressed as
Cohen’s d.

In the current study, we examine the variability of each indi-
vidual’s ratio effects in symbolic and nonsymbolic comparison
tasks in a large, cross-sectional dataset spanning Kindergarten to
Grade 6. By doing so we provide the first examination of the true
effects of numerical ratio on symbolic and nonsymbolic number
comparison performance and how this changes over developmen-
tal time. Specifically, we assess how this variability may alter and
contribute to current thinking about the meaning of ratio effects
with respect to the development of number processing and number
representation, as well as the similarities and differences between
symbolic and nonsymbolic number processing. We do this in four

ways. First, we assess whether within-subject variability of ratio
effects decreases over development and what this means for un-
derstanding how the overall influence of numerical ratio on per-
formance changes as a function of chronological age. Second, we
assess the statistical reliability of ratio effects on a child-by-child
basis. Does a small ratio effect indicate high numerical precision,
or the absence of the influence of ratio altogether? Computing the
statistical reliability of a given person’s ratio effect can help
untangle these two possibilities. Third, we examine whether sym-
bolic and nonsymbolic number comparisons are linked in terms of
the properties that govern the comparison process (e.g., represen-
tational precision): Is the statistical reliability of a given child’s
nonsymbolic ratio effect predictive of the same for their symbolic
ratio effect. Finally, we assess whether a clearer understanding of
the within-subject variability of ratio effects can help explain why
ratio effects are inconsistently associated with other measures of
numerical and mathematical processing.

Method

Participants

The data collection protocol was approved by the ethics review
board at Maastricht University. Data were collected cross-
sectionally from 1,739 Dutch children in Kindergarten through
Grade 6. Data in this study are a subset of the overall dataset;
specifically, here we focus on the Numeral comparison and Dot
comparison tasks. Chance performance is difficult to interpret, so
we removed children who performed at chance on either of these
task (�49% error-rate; results were consistent if this criterion was
removed or made more stringent, e.g., �40%). The overall final
sample size was N � 1,719 (see Table 1 for a summary of sample
statistics).

Arithmetic achievement was only collected for Grades 1–6, so
analyses concerning the relation between ratio effects and arith-
metic omit Kindergarteners. Of the 1,503 children in Grades 1–6
from above, we were unable to collect data on the arithmetic or one
or more of the control tasks from 13 children (4, 2, 1, 1, 4, 1
children in Grades 1–6, respectively), so these analyses proceeded
with an N of 1,490.

It is important to note that the data reported here are part of a
larger dataset, a portion of which has been previously described in
Lyons et al. (2014). Crucially, both the theoretical questions and
data analyses described here are completely separate from those in

Table 1
Participant Information for Each Grade

Grade Removed Final n Female Mean age

K 10 216 100 6.02
1 4 231 104 7.06
2 1 227 116 8.12
3 2 265 138 9.16
4 1 279 150 10.32
5 2 255 136 11.10
6 0 246 133 12.19

Total 20 1719 877 9.26

Note. Age (years) and gender statistics are computed based on the final
sample.
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Lyons et al. The reader may also notice that sample ns may not
match exactly those in Lyons et al. This is because the previous
study relied upon a larger set of tasks; requiring above chance
performance on the wider set of tasks resulted in omission of a few
more participants in each grade in that article. In addition, Lyons
et al. did not assess Kindergarten children.

Procedure

Children were from seven different primary schools in the
Netherlands. Parents denied consent by returning an enclosed
form. Trained project workers administered all measures to chil-
dren separately in a quiet room at school. Data were collected in a
single session for Grades K–2, 5–6, and in two sessions separated
by no more than 5 days for Grades 3–4.

The Ravens, and arithmetic achievement tasks were paper-and-
pencil tests. All other measures were computerized. In all tasks,
children were told to respond as quickly and accurately as possible.
No feedback was given during the main experimental trials. Sev-
eral practice trials were given for each of the numerical compar-
ison tasks. Reading, Ravens, and Arithmetic were each scored as
the total number of correctly completed items.

Numerical Comparison Tasks

Numeral comparison. In the Numeral comparison task, chil-
dren saw two numbers presented horizontally as Indo-Arabic-
numerals, and their task was to decide which number represented
the larger quantity. Children saw 64 trials. Thirty-two trials were
single-digit; 32 trials were double-digit. Ratios were equated
across single-and double-digit items. Quantities ranged from 1 to
45. Ratios (R � min/max) ranged from .25 to .80 (the exact
quantities for all trials can be found in the Appendix). Note that
only single-digit items were shown to Kindergarteners. Stimuli
remained on the screen until the child responded. For response-
times, only correct trials were considered. To eliminate abnormally
short or long response-times biased by processes likely unrelated
to numerical processing (e.g., accidental button presses, distraction
from the computer screen, etc.), trials with response-times �400
ms or �10,000 ms were eliminated (these arbitrary cut-off values
were yoked to the DotComp task below). This removed a total of
0.36% of all Numeral comparison trials. For response-times, over-
all reliability was excellent for this task (Cronbach’s � � .943, on
average; see Table 2); for errors, reliability was substantially lower
(Cronbach’s � � .616, on average; see Table 2).

Dot comparison. In the Dot comparison task, children saw
two arrays of dots—one on either side of the screen—and their
task was to decide which array contained more dots. The quantities
and ratios used were the same as those in the Numeral comparison
task (with the exception that Kindergarteners saw all 64 trials in
the Dot comparison task). Stimuli remained on the screen until the
child responded. Children were instructed to estimate which array
contained more dots without counting. Children likely complied
with this instruction, as response-times in fact decreased slightly as
set size increased. If children were counting, one would expect an
increase in response-times as the number of dots in the arrays
increased; but we found the opposite to be the case, with response-
times decreasing by an average of 6.5 ms for every dot added to the
comparison arrays. In other words, it is very likely that, despite the

lack of a time-limit to respond, children were indeed estimating the
relative number of dots in each array, instead of relying on a
counting strategy. To eliminate abnormally short or long response-
times biased by processes likely unrelated to numerical processing
(e.g., accidental button presses, distraction from the computer
screen, etc.), trials with response-times �400 ms or �10,000 ms
were eliminated. These arbitrary cut-offs were adopted to remove
�0.25% of trials in each direction, and resulted in removal a total
of 0.49% of all DotComp trials. For response-times, overall reli-
ability was excellent for this task (Cronbach’s � � .950, on
average; see Table 2); for errors, reliability was substantially lower
(Cronbach’s � � .742, on average; see Table 2).

Because of geometric imperative, within a given trial, all ver-
sions of a Dot-comparison task will allow for some nonnumerical
parameters (such as area, perimeter, density, etc.) to covary with
number. This problem is compounded by the fact that participants
switch the parameters they rely upon from trial to trial (Gebuis &
Reynvoet, 2012). Paradigms that rely solely on changing the
congruency of parameters with number between trials may fail to
adequately bias participants away from relying on nonnumeri-
cal parameters. In the current stimulus set, overall area and
average individual dot-size were always incongruent with num-
ber (the array with fewer dots had greater overall area and
larger average dot-size; individual dot-sizes varied randomly).
In other words, the nonnumerical strategy available in our study
was the more difficult one because relying on it would force
children to focus on nonnumerical variables incongruent with
the task goal (determine the numerically greater array). There-
fore, our paradigm relied on the assumption that children would
be more likely to rely on the relevant parameter (numerosity)
that was, by definition, congruent with the task goal than on a
parameter incongruent with the task goal (smaller overall area
and/or individual dot-size). We saw this assumption as imper-
fect but less problematic than the assumption (demonstrated to
be highly questionable by Gebuis & Reynvoet, 2012) that
participants would not switch between the parameters across
trials.

Ratio Effects

Ratio effects were determined by treating ratio �R �
nmin

nmax
� as a

continuous predictor of performance. For each child, individual
trials were treated as separate observations. For each format,

Table 2
Task Reliability Estimates (Cronbach’s �, Based On Average
Inter-Item Correlation) for Each Grade, as Well as the Average
Across Grades

Grade
Dot

response-time
Dot

error rate
Numeral

response-time
Numeral
error rate

K .937 .790 .857 .778
1 .943 .723 .929 .742
2 .943 .683 .949 .586
3 .943 .708 .950 .580
4 .951 .703 .960 .493
5 .970 .787 .977 .660
6 .959 .804 .980 .475

Average .950 .742 .943 .616
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there were 64 observations for most children—with one or two
fewer in the rare instances where a trial was rejected as an
outlier.

Our primary focus was on response-times. Note that this is in
contrast to the recent upsurge in popularity of “Weber fractions”
(w), which focus exclusively on error-rates. We chose to focus on
response-times for four reasons. First—for reasons outlined below
and in keeping with previous studies (e.g., Holloway & Ansari,
2009)—our comparison paradigms were optimized for response-
time analysis. Second, the most influential studies that have ob-
served decreases in ratio or distance effects over development (and
that have concluded that representational precision increases over
development) have relied upon response-times (Holloway & An-
sari, 2009; Sekuler & Mierkiewicz, 1977). Third, without even
considering ratio effects, reliability for the tasks themselves (Cron-
bach’s �), while excellent for response-times, was only acceptable
to poor in most grades for errors (see Table 2).

Fourth, and perhaps most crucially, one of our central goals
was to examine commonalities and differences in ratio effects
both across symbolic and nonsymbolic number comparison, as
well as across a range of ages. Error-rates for symbolic com-
parisons tend to be very low, with many individuals making no
errors whatsoever (indeed, this was a key reason why we biased
both symbolic and nonsymbolic paradigms to favor variability
in response times over error-rates). It is of course impossible to
estimate ratio effects on the basis of error-rates for such indi-
viduals, unless one assumes that ratio has absolutely no impact
on performance, which in the current context would be circular.
Furthermore, the prevalence of individuals with no errors in-
creases over development, which can fundamentally confound
attempts to draw inferences about how the magnitude of ratio
effects may differ between younger and older children. Indeed,
in the current dataset, the proportion of children showing no
errors in either the Dot or Numeral comparison task rose
dramatically from Kindergarten to 6th grade: 13.0%, 12.6%,
18.1%, 19.2%, 26.5%, 30.2%, and 33.3%, respectively. For
these reasons, we thus focus our Results and Discussion pri-
marily on response-times. For completeness, error-rates are
treated in Supplementary Material; however, even there, we
urge the reader to keep in mind the concerns raised here.

Our outcomes of interest were, for each child, the estimated
regression coefficient associated with ratio (bRE), the standard
error (SE) of this estimate (sRE), and the effect-size derived
from the combination thereof (dRE). The unstandardized coef-
ficient can be thought of as the expected increase in response-
time (in milliseconds for response-time, in percent-wrong for
errors) for that subject from a trial with ratio of 0 and a trial
with ratio of 1. Such ratios are somewhat nonsensical, so one
might instead think of half the estimated coefficient to reflect
the expected difference in response-times on a trial with ratio of
.25 versus .75. For example, a participant with an estimated
coefficient of 500 ms would be expected to take 250 ms longer
on a trial comparing 15 to 20 (ratio � .75), relative to a trial
comparing 5 to 20 (ratio � .25).

Ratio effects (bRE). Most studies assess only this statistic for
individual participants. It is typically calculated by subtracting
performance on the easier condition from the harder condition, or
by computing the slope of the relation between ratio and perfor-
mance (as we have done here). The magnitude of this value is then

taken as a measure of a given participant’s ratio effect. Here, we
calculated bRE as the unstandardized coefficient (see above) of the
relation between ratio and performance.

Variability of ratio effects (sRE). bRE is a point estimate of
the relation between ratio and performance. Any such point esti-
mate will be associated with a degree of error—which in this case
is the variability of the estimated coefficient. For each subject, we
also computed the (estimated) SE of the coefficient, which we
write here as sRE.

Effect-size of ratio effects (dRE). In most statistical tests, one
combines the estimate of the mean and variability of one’s mea-
surements of the mean to estimate the “true” size of the difference
between those means. This estimate (often a t-statistic) is then
commonly expressed as an effect-size, to give a relatively context-
free metric of the true magnitude of the effect. Here, we computed
Cohen’s effect-size d as a function of bRE, sRE, and the number of

valid trials n for that subject: dRE �
2t

�n�2
, where t is the t-statistic

associated with bRE �bRE

SRE
�. With bRE, sRE, and dRE, we were able to

compute, for each subject individually, their average ratio effect,
variability of the ratio effect, and the ratio effect-size, respectively.
Across Grades K–6, then, we were able to assess cross-sectional
developmental trends in these measures separately.

Additional Measures

For the purpose of computing the relation between ratio effects
and math ability, we report results from a mental arithmetic task
and several other control measures described below.

Mental arithmetic (Arithmetic). The Arithmetic task was the
standardized TempoTest Automatiseren (TTA) of basic arithmetic
ability (De Vos, 2010). Children were administered two work-
sheets—one containing 50 addition and the other containing 50
subtraction problems. Children were instructed to calculate as
many operations as possible within 2 min per worksheet. Scores
were the total number of correctly answered problems across both
worksheets. Reliability for this task is high (.92; Janssen et al.,
2010).

Nonverbal intelligence (Ravens). The Ravens control mea-
sure comprised a battery of progressive matrices. This is a normed,
untimed, visuospatial reasoning test for children (Raven et al.,
1995). Children saw a colored pattern and were to select the
missing piece from six choices. There were 36 test items. A child’s
score was the total number of correctly solved items. Van Bon
(1986) reported reliabilities of .80 or higher for the Dutch version
of this task.

Reading ability. The Reading measure was part of the
normed Maastricht Dyslexia Differential Diagnosis battery
(Blomert & Vaessen, 2009). It comprised three subtasks: high-
frequency words, low-frequency words, or pseudowords. In
each subtask, participants saw a series of up to five screens
(advanced by the experimenter), each with 15 items (75 total
items per task). Children were to read each item aloud as
quickly and accurately as possible. An experimenter manually
marked accuracy for each item. Scores were the total number of
correctly read items in 30 s, summed across the three subtasks.
Reported test–retest reliability for this task is high (.95; Blomert
& Vaessen, 2009).
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Basic stimulus-response processing. In this task, children
saw four horizontally arranged boxes on the screen. On each of 20
trials, a fish appeared in one of the four boxes. Children’s task was
to press the corresponding key on the response box as quickly and
accurately as possible. Reliability on this task was high: � � .944.

Results

Developmental Trends in dRE, sRE, and dRE

Developmental trends were assessed for each of the three mea-
sures (bRE, sRE, and dRE) by entering each into a 2(Format: Dot,
Numeral) � 7(Grade: K–6) analysis of variance (ANOVA). As
noted in Method section above, Results focus on response-times
(see Supplementary Material for error-rate results).

bRE (average ratio effect). Results for bRE (average ratio
effect) are summarized in Figure 1a. The main effects of Format
(F(1, 1712) � 845.06, p � .001, d � 1.41, �p

2 � .33; Dots: M �
1164.16, SE � 24.28, Numerals: M � 378.95, SE � 14.31); and
Grade (F(6, 1712) � 35.69, p � .001, d � 0.71, �p

2 � .11) were
highly significant. There was also a small (in terms of effect-size)
interaction (F(6, 1712) � 3.38, p � .003, d � 0.22, �p

2 � .01).
Considering each Format separately, the strongest trend (in terms
of polynomial contrast effect) was negative (indicating a decrease)
and linear in both cases (Dots: t1712 � 	10.31, p � .001,
d � 	0.50; Numerals: t1712 � 	10.32, p � .001, d � 	0.50).
Average ratio effects were overall much larger for Dot than Nu-
meral comparison; average ratio effects decreased as Grade in-
creased; this decrease was similar for both formats, albeit slightly
larger for Dots.

From the values in Figure 1a, it should also be clear that average
ratio effects were highly significant in all grades and both formats
(indeed, all ps � 1E-10). From this—as have many previous au-
thors—one might conclude that ratio plays a dominant role in shaping
numerical comparison behavior regardless of format, and that ratio
effects decrease over development. Note, however, that this interpre-
tation relies on computation of only average ratio effects in each child,
and computes variability thereof only at the group level. In the next
sections, we instead compute the variability of ratio effects at the
individual subject level—that is, at the same level at which average
ratio effects are computed (both traditionally in previous studies as
well as in the current study). We then test whether the traditional
inferences about the influence and developmental trajectory of ratio
effects still obtain.

sRE (variability of ratio effects). Results for sRE are summa-
rized in Figure 1b. The effect of Format was significant but modest
in size (F(1, 1712) � 14.20, p � .001, d � 0.18, �p

2 � .01; Dots:
M � 434.68, SE � 7.32, Numerals: M � 393.93, SE � 9.68). The
effect of Grade (F(6, 1712) � 310.11, p � .001, d � 2.09, �p

2 �
.52) and the interaction term (F(6, 1712) � 75.90, p � .001, d �
1.03, �p

2 � .21) were highly significant. Considering each Format
separately, the strongest trend (in terms of polynomial contrast
effect) was negative (indicating a decrease) and linear in both
cases (Dots: t1712 � 	21.32, p � .001, d � 	1.03; Numerals:
t1712 � 	42.61, p � .001, d � 	2.06). Variability in ratio effects
was overall slightly higher for Dots; variability dramatically re-
duced for both formats in older children, and this decrease was
substantially more rapid for Numerals. Specifically, variability
was higher for Numerals in Kindergarteners (p � .001,

d � 	1.35), the two formats did not differ in Grade 1 (p � .364,
d � 	0.12) and Grade 2 (p � .173, d � 0.18), and was higher for
Dots thereafter (ps � .001, ds � 1).

dRE (ratio effect-size). Results for dRE are summarized in
Figure 1c. The main effects of Format (Format: F(1, 1712) �
1262.78, p � .001, d � 1.72, �p

2 � .42; Dots: M � 0.686, SE �
.007, Numerals: M � .346, SE � .007) and Grade (F(6, 1712) �

Figure 1. Figure 1 shows developmental trends in each of the measures
of ratio effects: average ratio effect (bRE), variability of the ratio effect
(sRE), and the effect-size of this effect (dRE). Each measure was first
computed for each child separately. Values were then averaged across all
children in that grade. Error-bars: SEs of the mean.
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20.86, p � .001, d � 0.54, �p
2 � .07) were highly significant; the

interaction term was not (F(6, 1712) � 1.58, p � .150, d � 0.15,
�p

2 � .01). Considering each Format separately, the strongest trend
(in terms of polynomial contrast effect) was positive (indicating an
increase) and linear in both cases (Dots: t1712 � 7.55, p � .001,
d � 0.37; Numerals: t1712 � 8.16, p � .001, d � 0.39). Ratio
effect-sizes were overall larger for Dots than Numerals, increased
over development, and this increase was similar for both formats.

Summary. To summarize, average ratio effects (bRE), and the
variability of these ratio effects (sRE) decreased over development.
However, ratio effect-sizes (dRE) increased. That is, the reliability
of the influence of numerical ratio over performance (dRE) was
greater in older than in younger children, and this developmental
difference was similar across formats. In other words, the greater
developmental change with respect to ratio effects was in terms of
their variability (i.e., the change in sRE � bRE). The parallel
increases in dRE for Dots and Numerals were underlain by different
developmental trajectories for average and variability of ratio
effects. While average ratio effects (bRE) decreased more rapidly
for Dots, variability thereof (sRE) decreased significantly2 more
rapidly for Numerals. Finally, as will be taken up further in the
next section, ratio effect-sizes were substantially higher for non-
symbolic relative to symbolic number comparison.

Statistically Reliable Ratio Effects Within Individuals
(Response-Times)

One reason for the popularity of ratio effects (as well as for
distance effects and Weber-fractions) is that, at the population
level, they are a very good predictor of performance (especially
response-times, as in the present case). Indeed, if we take the
average response-time on each trial across all 1,719 children, and
then plot these averages against ratio, the correlations are reason-
ably high: Dots: r1717 � .723, Numerals: r1717 � .544. Note that
this approach implicitly takes the view that there is some under-
lying principle or tendency that governs human behavior (ratio
drives comparison performance), and individual variation around
this central governing tendency is essentially noise. Recently,
however, there has been a major upsurge in interest in this indi-
vidual variation—treating it not as noise, but as a source of
meaningful variation in itself. Researchers adopting such an “in-
dividual differences” approach have made several major discov-
eries in the field of numerical cognition of late, with special
emphasis put on the relation between individual differences in
ratio effects (or related measures such as distance, etc.) and indi-
vidual differences in more complex numerical skills, such as
mental arithmetic (e.g., Bonny & Lourenco, 2013; Bugden et al.,
2012; De Smedt et al., 2009; Feigenson et al., 2013; Fuhs &
McNeil, 2013; Halberda et al., 2008, 2012; Holloway & Ansari,
2009; Libertus et al., 2011; Lonnemann et al., 2011; Lyons &
Beilock, 2011; Mazzocco et al., 2011; Piazza et al., 2010; Sasan-
guie et al., 2012).

On the other hand, when one is concerned with individual
differences or variation around an assumed underlying principle, it
is crucial to obtain evidence that this principle is indeed influenc-
ing a given individual’s performance to begin with. More con-
cretely, many researchers have interpreted small average ratio
effects (bRE) as evidence that a given individual is capable of
representing numbers quite precisely. Another interpretation, how-

ever, is that ratio has no reliable influence over that person’s
performance to begin with—that is, ratio is unpredictive of the
person’s response-times. Notice that from an individual differ-
ences perspective, these two interpretations yield fundamentally
different inferences with respect to underlying cognitive ability:
does a small ratio effect indicate high numerical precision, or the
absence of the influence of ratio altogether? Taking into account
variability of a given person’s ratio effect can help untangle these
two possibilities. If a person has a small average ratio effect (bRE)
and shows low variability (sRE) in the effect, one may conclude
that ratio has a reliable influence over their performance, and
hence the small ratio effect may indeed indicate greater numerical
precision on their part. Conversely, if the same person shows
relatively high variability with respect to ratio (sRE), this would
suggest that ratio has little influence over their performance, which
in turn should limit one’s inferences with respect to the meaning-
fulness of their small ratio effect (bRE). In the current dataset, we
have computed individuals’ ratio effect-sizes (dRE) which is largely
driven by the ratio between bRE and sRE. In doing so, we saw in the
previous section (see Figure 1) that, even though average ratio
effects decreased with development, concomitant decreases in the
variability of these effects yielded increasing ratio effect-sizes—
indicating that, on average, ratio exerts more influence over per-
formance over development, not less.

With respect to individual differences, for each format (Dots and
Numerals) we can then ask what proportion of individuals showed
a statistically reliable influence of ratio on their number compar-
ison performance. If this proportion is high, then one might well
draw meaningful conclusions about number representation from
the magnitude of an individual’s ratio effect. On the other hand, if
the proportion is low, this would indicate that many individuals’
small ratio effects are statistically indistinguishable from random
noise—that should curb inferences regarding number representa-
tion accordingly.

To test this, we adopted a cut-off effect-size (dRE) of 0.5. First,
assuming 64 observations (i.e., the number of trials each partici-
pant completed in each format), a d of 0.5 corresponds to t62 �
1.97, p � .053. Second, general convention regards an effect-size
of 0.5 as the lower-bound of a “medium” effect (Cohen, 1992).
Third, if one presumes the existence of a true effect-size of 0.5,
then one’s power to detect this effect (at p � .05) with the current
number of observations per child (64 trials) is high: .97. At each
Grade and for each Format, we then computed the proportion of
children showing an effect-size (dRE) greater than or equal to 0.5.
Results are plotted in Figure 2.

Relatively few Kindergarteners showed statistically reliable ra-
tio effects: 57% for Dots and 26% for Numerals, indicating that
ratio effects in many children at this age may often be indistin-
guishable from random noise. For Dots, the proportion of children
showing statistically reliable ratio effects quickly climbed to over
three-quarters of children in 2nd grade and to over four-fifths by
3rd grade, indicating that ratio effects may well capture meaning-
ful numerical information in the majority of children. For Numer-
als on the other hand, the proportion of statistically reliable ratio
effects peaked at just over a third (38%) in 6th graders. For

2 The three-way interaction (Format � Grade � Measure: bRE, sRE) was
highly significant: F(6, 1712) � 19.29, p � .001, d � .52, �p

2 � .21.
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Numerals, then, one might expect that ratio effects in the majority
of even older children reflect little more than noise—indicating
that ratio has only a small and relatively unreliable influence over
Numeral comparison performance.

Ratio Effects Across Formats

There is considerable theoretical investment in the idea that
symbolic and nonsymbolic numbers are closely linked early in
development (Dehaene, 1997, 2008; Feigenson et al., 2004, 2013;
Gallistel & Gelman, 2000; Piazza, 2010). Indeed, the fact that ratio
effects are observed for both symbolic (Numerals) and nonsym-
bolic (Dots) number comparisons has been taken to indicate com-
mon underlying representation or basic processing across formats
(e.g., Dehaene, 2008).

This view predicts that ratio effects across formats should be
related. At first glance, Figure 2 would appear to confirm this
prediction. In Figure 2, the gray line represents the proportion of
children whom showed a statistically reliable ratio effect for both
Dots and Numerals. The gray line does appear to closely follow the
white line for Numerals. This might indicate that those children
who show a statistically reliable ratio effect for one format do so
also for the other format, which in turn would support the notion
that the two formats are closely linked. A skeptic might suggest
that the gray line is merely a reflection of the independent prob-
abilities for Dots and Numerals (i.e., the product of the black and
white lines). As it turns out, the gray line is very well predicted by
simply multiplying (at each Grade) the black and white lines (R2 �
.973), indicating that the black and white lines are statistically
independent of one another. Accordingly, if a child showed a
statistically significant ratio effect in one format, in no Grade was
this predictive of whether that child showed a statistically signif-
icant ratio effect in the other format (maximum R2 � .011).

An alternative view is that the relative magnitude of ratio effects
is valid only for those children who showed a statistically reliable
ratio effect, and so correlations should be restricted to just those
individuals. To test this, we restricted analysis to just those chil-

dren with dRE � .5 for both Dots and Numerals (n � 407).3 We
correlated each ratio effect measure across formats (i.e., Dot bRE

with Numeral bRE), controlling for chronological age and basic
processing speed (Ravens and Reading scores were not available
for many Kindergarteners). Only sRE showed a significant cross-
format correlation (bRE: r403 � .056, p � .264; sRE: r403 � .155,
p � .002; dRE: r403 � .022, p � .659). (Note also that results were
highly similar even if one assessed the entire sample.) In other
words, the relative magnitudes (bRE, dRE) of children’s ratio effects
were unrelated across formats. Variability (sRE) was weakly cor-
related across formats; however, this measure is closely related to
overall mean performance (see the next section), which compli-
cates one’s interpretation of this result.

In summary, our results consistently failed to show a relation
across formats in terms of ratio effects, indicating that what rela-
tion there may be between symbolic and nonsymbolic processing,
it is unrelated to representational precision, or whatever ratio
effects may be indexing in each respective format.

The Relation Between Ratio Effects and
Arithmetic Achievement

There has been considerable recent interest in the relation be-
tween measures of basic numerical processing abilities (such as
ratio effects, distance effects, and Weber-fractions) and math abil-
ities (e.g., Bonny & Lourenco, 2013; Bugden et al., 2012; De
Smedt et al., 2009; Feigenson et al., 2013; Fuhs & McNeil, 2013;
Halberda et al., 2008, 2012; Holloway & Ansari, 2009; Libertus et
al., 2011; Lonnemann et al., 2011; Lyons & Beilock, 2011; Maz-
zocco et al., 2011; Piazza et al., 2010; Sasanguie et al., 2012).
Here, we assessed the relation between each of our measures of the
ratio effect (bRE, sRE, and dRE) and Arithmetic. Recent work has
suggested that in some cases, simply taking average performance
may be preferable to deriving ratio-related performance (Inglis &
Gilmore, 2014). Indeed, results shown in Figure 2 indicate that, at
least for Numerals, ratio effects may be capturing little more than
statistical noise for the majority of subjects. Hence, in addition to
the three ratio measures, we also assessed the relation between
mean performance (M) and Arithmetic. For each measure, we also
controlled for Ravens, Reading, and basic stimulus-response pro-
cessing speed. Results are reported as partial correlations (rp) and
corresponding effect-sizes (d). Note that expected correlations are
negative, such that smaller ratio effects (faster response-times for
M) relate to better (higher) Arithmetic scores.

Table 3 summarizes the results. Note that nonsignificant corre-
lations are greyed out (after correcting for multiple comparisons4).
For both Dots and Numerals, M and sRE were significantly related
to mental arithmetic performance. For Dots, these relations should
be considered against the background that they (a) were only
obtained when using the full sample, (b) accounted for only about
1% of the total variance, and (c) were not significant in any of the
individual grades. For Numerals, the correlations between M and

3 Because of the limited sample size (less than a quarter of the original),
several grades were left with only a few dozen qualifying individuals;
hence, we collapse across grades here. Results were highly similar in each
grade, however.

4 Using the Dunn-Šidak method (Šidak, 1967), the critical threshold for
56 correlations was p � 9.2E-04.

Figure 2. Figure 2 shows the proportion of children showing a statisti-
cally “meaningful” ratio effect-size (dRE � .5) for symbolic (white line)
and nonsymbolic (black line) comparisons. The gray line indicates the
proportion of children showing a ratio effect-size �.5 for both formats.
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Arithmetic and sRE and Arithmetic were substantially larger (cor-
responding to effect-sizes of about .85 and .70, respectively), and
obtained in all six grades independently. Although the overall
relation between Numeral bRE and Arithmetic was significant, this
appears to have been driven by a single grade (5).

In summary, then, measures of ratio effects appear to have
limited predictive capacity with respect to arithmetic performance.
Neither bRE nor dRE was reliably correlated with Arithmetic. In
fact, consistent with previous work, a simple calculation of mean
performance (M) was the best predictor for both Dots and Numer-
als. This was followed closely by sRE. However, as it turns out, M
and sRE are highly correlated with one another to begin with (Dots:
rp(1489) � .826, Numerals: rp(1489) � .786); hence it is unsurprising
that both measures correlate similarly with Arithmetic. Finally,
consistent with prior work (Inglis & Gilmore, 2014), one may in
the end opt simply for mean performance because (a) M was
generally slightly more strongly correlated with Arithmetic than
sRE, and (b) M is substantially simpler to calculate than sRE—with
the upshot that one is effectively forgoing ratio-related measures of
performance altogether.

Discussion

The ratio effect has long been considered a hallmark of numer-
ical comparison tasks (e.g., Buckley & Gillman, 1974; Moyer &

Landauer, 1967). Ratio effects—the slope of the degree to which
ratio predicts performance—have long been interpreted as a mea-
sure of numerical representational precision, where a smaller ratio
effect is thought to indicate a more precise underlying represen-
tation (Dehaene, 1997, 2008; Dehaene & Changeux, 1993; Fei-
genson et al., 2004; Halberda & Feigenson, 2008; Nieder &
Dehaene, 2009; Verguts & Fias, 2004). Numerical comparisons
made with symbolic stimuli tend to show smaller ratio effects than
those made with nonsymbolic stimuli (e.g., Buckley & Gillman,
1974), and ratio effects are typically smaller in older relative to
younger children (e.g., Halberda & Feigenson, 2008; Holloway &
Ansari, 2009; Sekuler & Mierkiewicz, 1977). Accordingly, sym-
bolic number representation has been interpreted as being more
precise than nonsymbolic number representation, and representa-
tions in both formats are thought to become more precise over the
course of development (Feigenson et al., 2004, 2013; Holloway &
Ansari, 2009; Sekuler & Mierkiewicz, 1977). Similarly, correla-
tions between ratio effects and other types of math processing are
often interpreted to mean that more precise numerical representa-
tions predict better math ability (for a review, see Feigenson et al.,
2013).

Previous work has largely focused on average effects across
individuals, which tacitly assumes that individuals who fail to
show a reliable effect are the exception—deviating from the more

Table 3
Partial Correlations (rp) Between Overall Performance (in Terms of Response-Time: M) and Arithmetic Performance, as Well as That
Between Each Ratio-Effect Measure (bRE, sRE, and dRE) and Arithmetic

Dots Numerals

Grade M bRE sRE dRE M bRE sRE dRE

All
rp 	0.129 	0.047 	0.089 0.034 	0.402 	0.106 	0.335 0.065
p 6.3E-07 7.0E-02 6.1E-04 1.9E-01 4.3E-59 4.0E-05 2.6E-40 1.2E-02
d 	0.259 	0.094 	0.178 0.069 	0.879 	0.214 	0.710 0.130

1
rp 	0.116 	0.049 	0.110 0.070 	0.379 	0.001 	0.303 0.107
p 8.2E-02 4.6E-01 9.8E-02 3.0E-01 4.1E-09 9.9E-01 3.5E-06 1.1E-01
d 	0.233 	0.098 	0.222 0.140 	0.818 	0.002 	0.635 0.215

2
rp 	0.136 	0.107 	0.152 	0.003 	0.392 	0.079 	0.348 0.123
p 4.3E-02 1.1E-01 2.3E-02 9.7E-01 1.3E-09 2.4E-01 9.7E-08 6.6E-02
d 	0.274 	0.216 	0.307 	0.005 	0.853 	0.159 	0.742 0.248

3
rp 	0.057 	0.027 	0.034 0.078 	0.304 	0.011 	0.237 0.052
p 3.6E-01 6.7E-01 5.8E-01 2.1E-01 5.3E-07 8.6E-01 1.0E-04 4.0E-01
d 	0.114 	0.053 	0.069 0.156 	0.638 	0.023 	0.489 0.105

4
rp 	0.059 0.028 	0.052 0.022 	0.350 	0.127 	0.331 0.058
p 3.3E-01 6.4E-01 3.9E-01 7.1E-01 2.5E-09 3.5E-02 1.8E-08 3.4E-01
d 	0.119 0.056 	0.104 0.045 	0.747 	0.256 	0.703 0.117

5
rp 	0.148 	0.078 	0.104 0.045 	0.437 	0.252 	0.384 	0.050
p 2.0E-02 2.2E-01 1.0E-01 4.8E-01 5.7E-13 5.9E-05 3.9E-10 4.3E-01
d 	0.299 	0.156 	0.209 0.090 	0.971 	0.521 	0.832 	0.100

6
rp 	0.146 0.023 	0.014 0.070 	0.468 	0.280 	0.380 	0.039
p 2.3E-02 7.2E-01 8.3E-01 2.8E-01 1.5E-14 1.0E-05 1.0E-09 5.5E-01
d 	0.296 0.045 	0.027 0.140 	1.058 	0.583 	0.821 	0.077

Note. Correlations were computed after controlling for Ravens and Reading scores, as well as basic processing speed. This was done for each grade
separately as well as across the entire sample (all). Greyed-out values are nonsignificant after correcting for multiple (56) correlations (Šidak, 1967),
requiring a corrected p-value � 9.2E-04. Other terms: p � p-value, d � effect-size.
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general underlying principle. Here, we test this assumption in a
large, cross-sectional dataset (�1,700 children in Grades K–6) by
computing not just each participant’s average ratio effect (bRE), but
also the variability of each participant’s ratio effect (sRE), which in
turn allowed us to compute the effect-size (and statistical signifi-
cance) of each participant’s ratio effect (dRE). Our results lead us
to reconsider several central assumptions regarding the interpreta-
tion of ratio effects—in particular, how ratio effects change across
development, how and whether ratio effects index representational
precision, and what ratio effects indicate across formats (i.e.,
symbolic and nonsymbolic).

Using these measures, we found that the majority of individuals
showed statistically meaningful ratio effects for nonsymbolic com-
parisons. Indeed, effect-sizes were overall quite robust for non-
symbolic numbers, with dRE about .69 on average (across all
grades, and peaking at about .76 by Grade 6), which is well within
the “medium” effect-size range (Cohen, 1992), and, in the current
sample, corresponds to a significance level of p � .008 (p � .004
for Grade 6). Further, just over 75% of children showed a statis-
tically significant ratio effect (with this figure reaching over 80%
by Grade 6). Ratio effects thus exert a clear influence over per-
formance on nonsymbolic comparison tasks—an effect that can
robustly be measured in the large majority of children even at the
individual level. However, when it comes to symbolic numbers,
our results strongly undermine assumptions regarding the ubiquity
of ratio effects for symbolic numbers: Only about a third of
individuals showed a statistically meaningful symbolic ratio effect,
calling into question how much stock should be put into this effect
at the population level. Consistent with work on symbolic distance
effects (van Opstal et al., 2008; Verguts & van Opstal, 2005), our
results suggest the theoretical assumption that symbolic ratio ef-
fects index representational precision should be abandoned. Ratio
effect-sizes were overall small for symbolic numbers: dRE � .34
on average, which is traditionally a small effect and corresponds to
about p � .18. Indeed, only 30% of children showed a statistically
significant symbolic ratio effect overall—with barely a quarter
doing so in Kindergarten (26%). In other words, if a given effect
is exerting a barely detectable influence over performance, and this
influence is detectable only in about a third of one’s sample (i.e.,
the effect is indistinguishable from random noise in some 70% of
one’s sample), then the meaning of and weight given to one’s
interpretation of this effect, we believe, should be drastically
curtailed.

In a similar vein, our results indicate that the sources of ratio
effects for symbolic and nonsymbolic number comparisons are
likely derived from independent sources. One might begin with the
assumption that nonsymbolic ratio effects are indeed indicative of
underlying nonsymbolic representational precision. A long-held
view is that symbolic numbers point to these underlying nonsym-
bolic numerical representations; they just do so with more preci-
sion (Dehaene, 2008, p. 552; see also, Dehaene, 1997; Eger et al.,
2009; Feigenson et al., 2004, 2013; Gallistel & Gelman, 2000;
Hubbard et al., 2008; Libertus & Brannon, 2009; Lyons & Ansari,
2009; Nieder & Dehaene, 2009; Piazza et al., 2007; Verguts &
Fias, 2004). If this were the case, then one would expect ratio
effects for symbolic comparisons to be related to their nonsym-
bolic counterparts. Instead, we see that they are unrelated—a result
that holds even when we consider only children who showed
significant ratio effects in both formats. This is not only consistent

with a growing body of evidence calling into question the link
between symbolic and nonsymbolic number processing (Bulthé et
al., 2014; Damarla & Just, 2013; Lyons et al., 2012, 2015), it also
reaffirms the need to take greater care when interpreting the
meaning of symbolic ratio and/or distance effects.

It is interesting that about 3 in 10 children did show a significant
symbolic ratio effect. Why? We have already seen that, even in
these children, their symbolic and nonsymbolic ratio effects are
unrelated to one another, so the standard assumption that symbolic
ratio effects indicate a connection with nonsymbolic ratio effects
does not seem valid. We did see a weak correlation across formats
for sRE—a measure that is closely linked to overall mean perfor-
mance (M). This suggests that symbolic ratio effects—at least
those that can be detected—may derive from a more general
cognitive source. Perhaps one might instead turn to the suggestion
made by Verguts and van Opstal (2005) and van Opstal et al.
(2008) regarding symbolic distance effects: They index little re-
garding representation precision, but instead are driven by factors
such as relative word-frequency and response-selection. Symbolic
ratio effects, by extension, might index these or still other cogni-
tive factors (e.g., effects of unit notation; Moeller et al., 2012). One
might also examine increasingly more difficult ratios—that is,
those that would be impossible in a nonsymbolic context, such as
1,000,000 versus 1,000,001. In summary, there are many possible
explanations; however, we must emphasize that explanations re-
lying on a link between symbolic and nonsymbolic ratio effects
and accompanying notions of representational precision are not
supported by the current dataset.

The notion of representational precision also figures promi-
nently in interpretations of ratio effects in the context of the
development of numerical processing. The traditional view is that
the ratio effect is an indicator of representational precision, and a
decreasing ratio effect over development reflects an increase in
said precision (Feigenson et al., 2004, 2013; Halberda & Feigen-
son, 2008; Holloway & Ansari, 2009; Sekuler & Mierkiewicz,
1977). What we show here is that the influence of ratio on
comparison performance (in this case RTs5) in fact increases over
development. That is, effect-sizes were in fact larger in older
children (Figure 1c). On an arithmetic level, this simply means that
the variability of ratio effects (sRE) fell off more rapidly across
ages than did average ratio effects (bRE). More broadly, the in-
crease in ratio effect-sizes (dRE) over development puts one into an
awkward conceptual corner. At face value, then, numerical repre-
sentations are increasingly precise and this precision is increas-
ingly influential over (one’s ability to measure) comparison per-
formance. On the other hand, it is unclear why numerical
representations would contribute to numerical comparison perfor-
mance to differing degrees at different points in (school-age)
development. An alternative explanation is that we are simply
dealing with a measurement issue—younger children’s perfor-
mance is more variable and so one’s ability to detect subtle effects

5 Effect-sizes for errors decreased across grades (see Supplementary
Materials). On the other hand, both average ratio effects (bRE) and ratio-
effect variability (sRE) actually increased across grades. This latter result is
in contrast to previous studies (at least with respect to average ratio effects;
e.g., Halberda & Feigenson, 2008). As such, we believe this is yet another
reason (see Method for several other reasons) why inferences from the
error-rate data in the current study are very likely invalid.
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is substantially hampered. However, that is precisely the issue:
what may be a statistically robust effect later in development may
qualify as a “subtle” effect earlier in development. In particular,
this view lends skepticism to statements regarding the magnitude
of ratio effects early in development—especially if these state-
ments do not take into account the underlying variability of the
effect in question. Indeed, barely more than half (57%) of Kinder-
garteners showed a statistically robust ratio effect. The upshot is
that the ratio effects of the other 43% are, strictly speaking, not
reliably distinguishable from random noise. If nearly half of one’s
sample is failing to show a reliable effect, perhaps it is unwise to
draw too strong a conclusion about the meaning of that effect—be
it representational precision or some other interpretation such as
input frequency, response selection, and so forth (e.g., Verguts &
van Opstal, 2005; van Opstal et al., 2008). In summary, we show
that the influence of ratio on performance during both symbolic
and nonsymbolic number comparison is in fact greater in older
children, which calls into question the assumption that develop-
mental change in ratio effects is indicative of underlying change in
representational precision.

The fact that many individuals do not show a significant or
reliable ratio effect (especially in the case of symbols) is particu-
larly salient in light of the recent popularity of relating individual
differences in performance on basic numerical tasks with scores on
more complex math processing (e.g., Bonny & Lourenco, 2013;
Bugden et al., 2012; De Smedt et al., 2009; Feigenson et al., 2013;
Fuhs & McNeil, 2013; Halberda et al., 2008, 2012; Holloway &
Ansari, 2009; Libertus et al., 2011; Lonnemann et al., 2011; Lyons
& Beilock, 2011; Mazzocco et al., 2011; Piazza et al., 2010;
Sasanguie et al., 2012). When one is concerned with individual
differences or variation around an assumed underlying principle, it
is crucial to obtain evidence that this principle is indeed influenc-
ing a given individual’s performance to begin with. With respect to
ratio effects, the common assumption is that this principle is
representational precision, and therefore, many have interpreted a
small average ratio effect (bRE) as evidence that a given individual
is capable of representing numbers quite precisely. On the other
hand, if a small mean effect is not accompanied by proportionally
small variability in the effect, then, statistically speaking, one may
question the presence of an effect to begin with. That is, the
underlying principle—ratio drives performance as a function of
representational precision—may not be applicable to the individ-
ual in question. In fact, we found that individual differences in
ratio effects were unrelated to individual differences in mental
arithmetic ability. By contrast, consistent with previous work
(Inglis & Gilmore, 2014), overall average response times (M) was
correlated with performance, suggesting that, when it comes to
predicting individual variability in Arithmetic, one might well
forgo ratio-related measures of performance altogether. Also con-
sistent with previous work, this relation was especially robust for
symbolic number comparisons (e.g., Lyons et al., 2014; for a
review and meta-analysis, respectively, see De Smedt et al., 2013;
Fazio et al., 2014). It is worth highlighting this latter result because
it indicates that the task that showed the least amount of
statistical validity in terms of ratio effects (symbolic compari-
sons) was nevertheless the strongest predictor of arithmetic
performance. Crucially, however, this was the case only once
one abandoned the notion of ratio effects altogether in favor of
simple mean response times (M). This raises the striking pos-

sibility that the relation between basic numerical competencies
and more complex math processing in fact has little to do with
representational precision.

Along these lines, previous researchers have already begun to
call into question the validity and meaning of symbolic distance
effects (and thus, by extension, ratio effects as well). Maloney et
al. (2010) showed that numerical distance effects for symbolic
number comparisons were unreliable even for adult subjects within
the same testing session (distance effects were uncorrelated across
blocks). Our results help contextualize Maloney et al.’s: symbolic
ratio/distance effects may be unreliable because, in the majority of
individuals, these effects are indistinguishable from random noise.
As noted previously, Verguts and van Opstal (2005; see also van
Opstal et al., 2008) have proposed an alternative explanation
(based on both empirical evidence and a computational model) of
the symbolic distance effect. The model eschews representational
precision, and instead generates the classic distance effect because
response selection mechanisms are sensitive to the relative fre-
quency with which it encounters different numbers (frequencies
that were calculated to match those found in human lexical corpi).
Perhaps, then, rather than representational precision, it is individ-
uals’ familiarity and fluency with which they can manipulate
(especially symbolic) numbers that serves as the crucial link be-
tween basic numerical skills (such as number comparison) and
more complex math abilities (such as mental arithmetic). Further-
more, both we and several previous studies (e.g., De Smedt et al.,
2013; Fazio et al., 2014; Lyons et al., 2014) have shown that
symbolic comparison performance is a stronger and more robust
predictor of arithmetic processing. Taken together, both our data
and the evidence reviewed above support the notion that sophis-
ticated math skills have little if anything to do with the precision
with which one can represent nonsymbolic numbers. To be clear,
we are not claiming that nonsymbolic number processing is en-
tirely irrelevant for other kinds of math processing. Rather, our
statement pertains to the notion of “representational precision” per
se (for consistent recent evidence, see, e.g., Park & Brannon,
2014).

Turning to methodological considerations, it is important to note
that, with 64 trials,6 our power to obtain statistical significance for
the average effect-size seen for symbolic numbers (.35) was rea-
sonably high: .78. Hence, one might ask: why not simply establish
a cut-off at .35, instead of the stricter .5—would not a simple shift
of the arbitrary cut-off change the proportion of children showing
a significant effect? Similarly, could one not simply increase the
number of trials to increase power and so make a statistically
significant result more likely? On both counts, the answer is of
course yes, it would. However, we believe to do so would be to
miss the broader point. First, because .35 was the average effect-
size, one would still expect that roughly half of children would fail
to pass even this more liberal threshold. Second, while increasing

6 Only 32 trials of the symbolic task were completed by Kindergarteners.
Note, however, that Figures 1c and 2c show that results for Kindergarteners
fit well within the overall trend in terms of effect-size (all trends across
Grades remained consistent even when only Grades 1–6 were considered).
Indeed, if anything, a slightly higher proportion of Kindergarteners (26%)
than 1st or 2nd graders (21% and 22%) passed the d � .5 threshold for the
symbolic task. Kindergarteners completed 64 trials in the nonsymbolic
comparison task.
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the number of trials will decrease p values, one’s estimate of the
underlying effect-size should remain relatively unchanged, or even
decrease (Button et al., 2013; to say nothing of the methodological
difficulty that imposing a large number of trials on young children
would present). Hence the real question: what is a meaningful
effect-size? One could theoretically drop the effect-size threshold
asymptotically toward zero indefinitely, so there is no purely
mathematical or universal answer to this question. On the other
hand, if one’s goal is to identify and measure an indicator of a
crucial aspect of numerical processing—representational preci-
sion—then we believe that a relatively small effect-size of .35 (or
even smaller for many children, especially those in the early
grades) makes ratio effects for symbolic numbers an unlikely
candidate in this respect.

One might also object to this conclusion on other methodolog-
ical grounds. For instance, the tasks themselves might be unreli-
able, or perhaps children’s performance therein might be too
variable to derive meaningful conclusions from subtler modulators
of performance. In response, overall reliability for both symbolic
and nonsymbolic comparison tasks was excellent for response-
times (�s � .9 in all cases but one, and �s � .94 on average; see
Table 2).7 Another potential objection is that a subset of nonsym-
bolic comparison trials involved quantities entirely within the
subitizing range (�4). For the nonsymbolic task, ratio effects were
significant for the large majority of children, so if anything
we might be underestimating this result (note also that removing
these trials did not substantially change the results, including the
lack of correlation between symbolic and nonsymbolic ratio ef-
fects). Moreover, one might also consider that the range of ratios
used here might be too narrow to detect meaningful modulation of
performance by numerical ratio. As noted above, for the nonsym-
bolic task, ratio effects were significant for the large majority of
children, so this objection would need to apply more specifically to
the symbolic results. First, the ratios and quantities used here (.25
to .77) are quite similar to those used throughout the literature.
This means that symbolic ratio effects in such cases should be
viewed with skepticism, which is what we are arguing for in any
event. Second, even if one were to find more reliable ratio effects
in a symbolic number comparison task using ratios much closer to
1, it is worth noting that such ratios would begin to exceed the
perceptual limits of nonsymbolic number comparison even in
adults (usually around .85 to .90; Halberda & Feigenson, 2008;
Pica et al., 2004). The upshot here is that one would need different
ratios to detect ratio effects across the two formats, but such a turn
would merely reinforce one of our other central claims: the un-
derlying processes that generate ratio effects in symbolic and
nonsymbolic comparisons are less related than has been previously
assumed (see below for further discussion of this issue, especially
with respect to the notion of representational precision). In sum-
mary, then, we retain the overall conclusion that placing too much
theoretical stock in the interpretation of ratio effects in symbolic
number comparison tasks is likely to be a mistake.

A final but important point to consider is that the current
analyses and results focus almost exclusively on response times.
We have already argued extensively (see Method and Supplemen-
tary Materials) why interpretation of error-rates in the current
dataset is substantially compromised, so we will not repeat those
arguments here. However, there are certainly cases where one
would want to examine error-rates and be entirely justified in

doing so. Indeed, especially for nonsymbolic numbers, a popular
measure of comparison performance is the Weber-fraction (w),
which relies exclusively on error-rates. First, it is worth noting
that, strictly by virtue of the math involved, w is inextricably tied
to the notion of ratio. In essence, one can see w as a modulating
factor of the relation between ratio and performance—that is, a
relation between ratio and performance is a necessary assumption
for estimating w.8 That said, given the current popularity of w in
the literature, it remains to be seen whether our observations
concerning the impact (or lack thereof, especially for symbolic
numbers) of ratio effects on response times obtain or differ in a
setting better optimized for capturing error data.

In conclusion, our results call into question the traditional in-
terpretation of ratio effects as reflective of representational preci-
sion. For symbolic numbers in particular, the existence and
broader meaning of ratio effects needs to be re-examined in a
major way. Only about a third of individuals showed a statistically
meaningful symbolic ratio effect, calling into question how much
stock should be put into this effect at the population level. Our
results also contradict the standard interpretation that developmen-
tal change in ratio effects is driven by change in representational
precision for either symbolic or nonsymbolic numbers. We are not
denying the possibility that numerical representations do not be-
come more precise in older children; rather, we are saying that
changes in ratio effects do not index this change. Furthermore, our
results indicate that the sources of ratio effects for symbolic and
nonsymbolic number comparisons are derived from independent
sources. This is not only consistent with a growing body of
evidence calling into question the link between symbolic and
nonsymbolic number processing more broadly. Finally, our results
show that the link between number comparison tasks and individ-
ual differences in arithmetic is both largely independent of ratio
effects, and hence unlikely to be driven by representational preci-
sion. Instead, we suggest that greater attention be given to more
general processing mechanisms, such as response selection, re-
sponse variability, and various cognitive control mechanisms.
Taken together, the relatively simple methodological point we
make here—computing the statistical magnitude, or effect-size of
ratio effects at the individual instead of the sample level—leads us
to call into question several major assumptions in the field of
numerical cognition, and to shift focus to alternative interpreta-
tions that have recently gained support elsewhere in the literature.

7 Admittedly, reliabilities were notably lower for errors; but here again,
we must note that the current tasks were optimized for measuring response-
times, and reiterate our own skepticism when it comes to overly interpret-
ing the error data presented in the Supplementary section. As such, our
central conclusions focus on response-times, which, as noted, showed
excellent task-reliability levels for both comparison tasks.

8
When estimating w one fits the equation, ER̂ �

1

2
erfc�� 1

w� R�1

�2�R2�1��,

where ER̂ is the estimated error-rate (i.e., probability of making an error),

R is the ratio:
max�n1, n2�
min�n1, n2�

. If one removes w from the equation and simply

evaluates ER̂ �
1

2
erfc� R�1

�2�R2�1��, the result will be correlated with R	1 at .99.

In other words, the equation sans w is essentially an estimate of the relation
between ratio and error-rates. It is in this way (a) that calculating w
assumes a relation between ratio and error-rates, and (b) w serves essen-
tially as a modulating factor of this assumed relation.
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Appendix

Shows Quantities Used for All 64 Trials

Left Right Ratio Left Right Ratio

4 1 .250 33 11 .333
8 2 .250 39 13 .333
2 8 .250 11 33 .333
1 4 .250 30 10 .333
2 6 .333 36 12 .333
3 9 .333 12 36 .333
9 3 .333 15 45 .333
6 2 .333 13 39 .333
4 2 .500 11 22 .500
3 6 .500 14 28 .500
1 2 .500 22 11 .500
8 4 .500 13 26 .500
6 3 .500 24 12 .500
2 4 .500 12 24 .500
4 8 .500 26 13 .500
2 1 .500 20 10 .500
3 5 .600 17 11 .647
5 3 .600 19 29 .655
2 3 .667 29 19 .655
6 9 .667 21 32 .656
3 2 .667 15 10 .667
9 6 .667 12 18 .667
6 4 .667 18 12 .667
4 6 .667 20 30 .667
5 7 .714 11 15 .733
7 5 .714 15 11 .733
6 8 .750 12 16 .750
4 3 .750 16 12 .750
3 4 .750 17 13 .765
8 6 .750 13 17 .765
9 7 .778 10 13 .769
4 5 .800 13 10 .769

Note. Trials were the same for both symbolic and nonsymbolic comparison tasks. Trial presentation order was
randomized.
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