
Cognition 121 (2011) 256–261
Contents lists available at SciVerse ScienceDirect

Cognition

journal homepage: www.elsevier .com/ locate/COGNIT
Brief article

Numerical ordering ability mediates the relation
between number-sense and arithmetic competence

Ian M. Lyons, Sian L. Beilock ⇑
Department of Psychology, University of Chicago, United States

a r t i c l e i n f o
Article history:
Received 14 September 2010
Revised 8 June 2011
Accepted 22 July 2011
Available online 19 August 2011

Keywords:
Mathematical cognition
Number representation
Ordinality
0010-0277/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.cognition.2011.07.009

⇑ Corresponding author. Address: Department
South University Avenue, The University of Chicag
United States.

E-mail address: beilock@uchicago.edu (S.L. Beilo
a b s t r a c t

What predicts human mathematical competence? While detailed models of number repre-
sentation in the brain have been developed, it remains to be seen exactly how basic num-
ber representations link to higher math abilities. We propose that representation of ordinal
associations between numerical symbols is one important factor that underpins this link.
We show that individual variability in symbolic number-ordering ability strongly predicts
performance on complex mental-arithmetic tasks even when controlling for several com-
peting factors, including approximate number acuity. Crucially, symbolic number-ordering
ability fully mediates the previously reported relation between approximate number acu-
ity and more complex mathematical skills, suggesting that symbolic number-ordering may
be a stepping stone from approximate number representation to mathematical compe-
tence. These results are important for understanding how evolution has interacted with
culture to generate complex representations of abstract numerical relationships. Moreover,
the finding that symbolic number-ordering ability links approximate number acuity and
complex math skills carries implications for designing math-education curricula and iden-
tifying reliable markers of math performance during schooling.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The intriguing hypothesis that the human symbolic
number system is a direct extension of an evolutionarily
ancient and developmentally fundamental sense of quantity
has gained considerable momentum in recent years
(Dehaene, 1997; Nieder & Dehaene, 2009). Work with
children and young teenagers has shown a positive relation-
ship between individual differences in approximate num-
ber-acuity (i.e., the ability to discriminate non-symbolic
quantities) and math achievement (Gilmore, McCarthy, &
Spelke, 2010; Halberda, Mazzocco, & Feigenson, 2008). This
result has lent support to the view that complex mathemat-
ical concepts are rooted in an approximate number system
. All rights reserved.
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(ANS) shared across many species (‘number sense’: Nieder
& Dehaene, 2009). However, even assuming human
mathematics was kick-started by a universal and evolu-
tionarily ancient system of representing (approximate)
non-symbolic magnitudes, considerable work is needed to
characterize the intermediary steps that allow this basic
system to be co-opted for a functioning grasp of complex
mental-arithmetic (Dehaene & Cohen, 2007). We propose
that efficient representation of the ordinal associations
between numerical symbols is one such step.

Both monkeys (Cantlon & Brannon, 2006) and children
as young as 11 months can discriminate approximate
quantities in terms of relative order (Brannon, 2002), sug-
gesting that ordinality is a basic property of the ANS. More-
over, we have shown that one’s ability to use this ordinal
information facilitates the transition from approximate to
symbolic numerical representation (Lyons & Beilock,
2009). When trained to relate approximate quantities (that
could only be represented initially by the ANS) to a novel
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1 Note that a key difference between a traditional multiple regression
analysis and a formal mediation analysis is that with the latter one seeks to
explain the mechanism underlying an observed relation between two
variables (and not the variance of a single outcome measure per se).
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set of symbols, participants who explicitly focused on the
ordinal relations between these symbols learned to use
them more accurately in a numerical context. In addition,
those individuals most likely to rely on ordinal strategies
during novel numerical symbol acquisition also showed
greater sensitivity to ordinal information in overlearned
numerical symbols (Arabic numerals) in a manner that
went beyond the simple count list (e.g., {2 4 6}, {1 4 7}).
The above results suggest that a key aspect of transitioning
from ANS to symbolic representations of number involves
extraction of ordinal information from the ANS and codifi-
cation of these ordinal relations in terms of direct associa-
tions between symbolically represented quantities.

Why might this be the case? The ANS is asymmetrically
imprecise: as quantity increases, ANS representational pre-
cision decreases (Merten & Nieder, 2009; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004). A more ideal number
system would be one in which quantity and representa-
tional precision are independent. One way to achieve this
precision is via a system that determines quantity primar-
ily in relation to other quantities (e.g., the next number is
always exactly one more than the current number,
whether the current number is 1, 100, or 1000; for similar
suggestions, see Le Corre & Carey, 2007; Izard, Pica, Spelke,
& Dehaene, 2008). Relative ordinal position (‘81’ is equally
’81 items’ and ‘the 81st item’) is exactly the kind of associ-
ation one would expect to play a fundamental role in such
a system.

Indeed, Nieder (2009) has proposed that symbolic num-
bers form a system in which the associations between
symbols are a fundamental aspect of their meaning, and
the strength of these associations may even come to over-
shadow the relations between the symbols and their actual
referents (i.e., the sense of quantity in the ANS that a given
symbol represents). Recent evidence supports Neider’s
view. Several groups (Franklin & Jonides, 2009; Franklin,
Jonides, & Smith, 2009; Lyons & Beilock, 2009; Turconi,
Campbell, & Seron, 2006) have shown that sets of numeri-
cal symbols arranged in increasing order activate a repre-
sentation of relative order whose influence surpasses the
actual magnitudes the numerals represent. That is, the
well-known and typically dominant effect of numerical
distance seen as a hallmark of the ANS (e.g., Moyer &
Landauer, 1967; Buckley & Gillman, 1974) can be com-
pletely reversed in numerical symbols when the relative
ordinal associations between symbols are accessed.

Nieder’s proposal is based on a more general view of
symbolic processing in which increasingly abstract sym-
bolic representations derive their respective meanings
primarily via their relations with other symbolic represen-
tations – and less so by a relation to what they actually
represent (Crutch & Warrington, 2010; Deacon, 1997;
Peirce, 1955). One implication of this view is that we need
numerical symbols not only because they represent large
quantities precisely, but also because they facilitate acqui-
sition and storage of complex relations between numbers
(in a manner that may be more efficient and precise than
can be achieved via the ANS alone).

What might be the function of these myriad associa-
tions between numerical symbols? Much of mental arith-
metic concerns the efficient processing of associations
between numbers (Clark & Campbell, 1991; García-Orza,
Damas-López, Matas, & Rodríguez, 2009; Verguts & Fias,
2005). Without knowing the correct global ordering of
the number symbols (a la Lyons & Ansari, 2009; Lyons &
Beilock, 2009), it is difficult to see how one can develop a
deeper understanding – beyond rigid, rote memorization
– of the numerical system that underlies arithmetic more
generally. That is, ordinal relations form the building
blocks of symbolic numbers as a larger associative system
that allows for rapid inference beyond what has been di-
rectly learned via repeated stimulus and response. In this
way, the degree to which one has mastered ordinality of
symbolic numbers should predict a reliable component of
complex mental arithmetic. For instance, understanding
the correct ordinal relation between successive symbolic
numbers may allow for a more general understanding of
the functions n + 1 and n � 1. If one extends the principle
to multiples (e.g., {2 4 6}), the ordinality of which has been
shown to be better mastered by those more likely to ac-
quire numerical symbols in terms of their relative order
in the first place (Lyons & Beilock, 2009), one can form
an understanding of multiplication and division that again
extends beyond mere memorization of individual arithme-
tic facts.

To summarize, we propose that representing relative
order in numerical symbols may serve as an ideal stepping
stone between the ANS and higher math abilities (e.g.,
complex arithmetic skills). If the ANS is linked to acquisi-
tion of symbolic numerical order, then greater ANS acuity
should be related to more efficient assessment of ordinal
relations in symbolic numbers. Moreover, if ordinal under-
standing in numerical symbols serves as a foundation for
the associations accessed during mental arithmetic, then
assessment of ordinal relations in symbolic numbers
should predict complex mental-arithmetic ability. Finally,
we also hypothesized that the level of one’s numerical
symbol-ordering ability is a key mechanism that mediates
(explains)1 the previously observed relation between
ANS ability and more complex math abilities (Gilmore
et al., 2010; Halberda et al., 2008). In this way, we directly
test our proposal that relative order in numerical symbols
is a stepping stone between the ANS and higher math
abilities.

2. Methods and results

2.1. Participants

University students (N = 54; 26 female; M = 20.5 years)
participated for course credit or monetary compensation.

2.2. Procedure

All subjects completed all tasks, organized into three
modules. Module 1 included numeral-ordering, letter-
ordering, dot-comparison and numeral-comparison tasks
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(task-order was randomized across subjects). Module 2
comprised numeral-recognition (presented first) and 4
mental-arithmetic tasks (presentation order randomized
across subjects). Order of Modules 1 and 2 was counterbal-
anced. Module 3 contained the working-memory task and
was completed last. On all tasks, subjects were instructed
to respond as quickly as possible without sacrificing accu-
racy. No feedback was given.

2.2.1. Dependent measure: mental-arithmetic
Our dependent measure was performance on four diffi-

cult mental-arithmetic tasks: addition (three, two-digit ad-
dends), division (two or three-digit dividend, a one-digit
divisor, and a two or three-digit quotient), multiplication
(a two-digit and a one-digit factor), and subtraction (two-
digit minuend and subtrahend) (Fig. 1a). Arithmetic prob-
lems were adapted and computerized from the Kit of Fac-
tor-Referenced Cognitive Tests (Ekstrom, French, Harman,
& Dermen, 1976). Problems were open-ended (participants
typed their responses using the number-pad). Participants
were not allowed to work out problems using paper or
pencil (though not strictly forbidden, no participants spoke
aloud during this task).

Mental-arithmetic performance was calculated as the
standardized ðz ¼ xi��x

r Þ average (over the four problem
types) of the net number of correctly solved problems in
a twelve-minute time span (one three-minute block per
operation type). This presentation (and scoring) method
was chosen to reduce the impact of doing math under
time-pressure; as such, participants were not aware of
the time-limit (from the participant’s perspective, they
Fig. 1. (a) Examples of the complex mental-arithmetic tasks used to
estimate mental-arithmetic ability (dependent-measure). (b) Error rates
from the dot-comparison task were used to estimate individual differ-
ences in participants’ ANS acuity (predictive-measure). (c) The numeral-
ordering task was used to estimate symbolic number-ordering ability
(predictive-measure).
had simply completed the allotted number of trials for that
block). Behavioral results indicated that the mental-arith-
metic task was quite difficult [response-time: M = 7.75 s,
se = .36 s; error-rate: M = .13, se = .02).

2.2.2. Predictive measure (1): ANS acuity
ANS acuity was measured using a canonical dot-quan-

tity comparison task (Fig. 1b). Participants estimated
which of two dot-arrays contained more dots (range: 1–
9, |n1 � n2| 6 2). Eight total instances of each numerical
pair were seen by each subject. Half of the pairs were equa-
ted in individual dot area; half were equated in overall dot
area. Orthogonally, half of the pairs were equated in inter-
item spacing (local density); half were equated in overall
contour-length (outer array perimeter). Hence, partici-
pants could not rely on any one of these continuous
parameters to estimate array numerosity and perform
above chance.

An accepted measure of individual differences in ANS
acuity is an estimate of a participant’s Weber coefficient
w, where a smaller w corresponds to higher ANS acuity
(Halberda et al., 2008; Pica, Lemer, Izard, & Dehaene,
2004; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). Each
participant’s w was estimated by identifying the value of w
that yielded the best approximation of their actual pattern
of errors, as a function of the ratio between quantities
being compared. For a given pair of quantities (n1, n2) that
we treat as Gaussian random variables, expected error-rate
(ER) when comparing n1 and n2 can be estimated from one
tail of the complementary error-response function erfc.
This function takes as its input a value from a normalized
Gaussian distribution, which, here, is the w-weighted,
normalized difference between n1 and n2: ER ¼
1
2 erfc jn1�n2 j

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn2

1þn2
2Þ

p
� �

. Using this method, we obtained a mean

w of .117, which is close to the previously reported value
of .11 in adults (Pica et al., 2004). Furthermore, assuming
w = .117, agreement between values for ER and observed
error-rates (as a function of comparison ratio) was high
(R2 = .95).

2.2.3. Predictive measure (2): symbolic number-ordering
ability

In the numeral-ordering task (Fig. 1c), participants
decided whether triads of Arabic numerals (range: 1–9)
were all in increasing order (left to right), irrespective of
numerical distance between numbers. Participants com-
pleted 2 blocks of 64 trials. The overall pattern of results
in all regression analyses was similar for response-times
and error-rates; thus, we simplified our measure of perfor-
mance on this task by averaging standardized error-rates
and reaction-times: lower number indicates better
performance.

2.2.4. Covariates
Covariate tasks included letter-order judgment (identi-

cal to the numeral-ordering task, with the exception that
the digits were replaced with the letters A to I), numeral-
comparison (identical to the dot comparison task, with
the exception that quantities were presented as Arabic



Table 1
Mental-arithmetic ability (higher number =: better performance) regressed
on several individual-difference variables: NumOrd: numeral-ordering
(lower number: better performance), ANS acuity (lower number: better
acuity), NumComp: numeral-comparison (lower number: better perfor-
mance), LettOrd: letter-ordering (lower number: better performance),
WorkMem: working-memory capacity (higher number: higher capacity),
NumRecog: numeral-recognition (lower number: better performance).
Overall model fit: adj. R2 = .514. The rightmost column indicates simple
Pearson correlation coefficients (and associated p-values) between each
predictor and mental-arithmetic ability in the absence of any of the other
predictors; rpartial, by contrast, is the r-value between a given predictor and
mental-arithmetic ability while controlling for shared variance between all
other predictors and both mental-arithmetic ability and the predictor in
question.

Predictor b (SE) t (p) rpartial r (p)

NumOrd �.7124 (.1568) �4.543 (.000) �.552 �.703 (.000)
ANS acuity �.2308 (1.6014) �.144 (.886) �.021 �.339 (.012)
NumComp .0217 (.1350) .161 (.873) .023 �.305 (.025)
LettOrd �.0190 (.1490) �.128 (.899) �.019 �.382 (.004)
WorkMem .0085 (.0044) 1.945 (.058) .273 .305 (.025)
NumRecog �.0004 (.0004) �.998 (.324) �.144 �.299 (.028)
Constant �.0069 (.6144)

Fig. 3. In the mediation framework, one asks whether there is a
significant indirect effect (quantified as the product of the unstandardized
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numerals), numeral-recognition, and a working-memory
task (automated reading-span: Conway et al., 2005;
Unsworth, Heitz, Schrock, & Engle, 2005). Additional task
details and raw behavioral results can be found in
Supplementary Information.

2.3. Results

First, we replicated the finding that better ANS acuity
predicts math ability. Higher acuity (smaller Weber coeffi-
cient) was related to better mental-arithmetic perfor-
mance (higher mental-arithmetic scores) [r(52) = �.339,
p = .012]. To our knowledge, this is the first demonstration
that individual differences in ANS acuity predict perfor-
mance for a complex, symbolic math task in college-aged
adults – extending into adulthood the original Halberda
et al. (2008) findings examining 14-year-olds.

Second, we tested the hypothesis that symbolic num-
ber-ordering ability predicts mental-arithmetic perfor-
mance. Better performance on the numeral-ordering task
was significantly correlated with better mental-arithmetic
performance [r(52) = �.703, p < .001; Fig. 2]. Crucially, this
relation remained significant even when controlling for
ANS acuity, and performance on the numeral-comparison,
letter-ordering, working-memory and numeral-recogni-
tion tasks (Table 1). Thus, the relationship between numer-
al-ordering and mental-arithmetic cannot be merely due
to general cognitive factors (working memory), presenta-
tion format (Arabic numerals), or even accessing quantity
information from symbolic numbers (numeral compari-
son). Rather, it is the processing of numerical ordinal infor-
mation – over and above these related factors – that is the
key property linking the numeral-ordering and mental-
arithmetic tasks. We also controlled for ordering ability
in a non-numerical (letter ordering) context, which nar-
rows the result still further to understanding ordinal rela-
tions among symbolic numbers and not ordinal processing
in general.

Third, we showed that ANS acuity was positively re-
lated to numeral-ordering ability [r(52) = .408, p = .002], a
Fig. 2. Scatterplot of the relation between symbolic number-ordering
ability and complex mental-arithmetic ability. Note that higher numbers
indicate worse performance for numeral-ordering, but better performance
for complex mental-arithmetic.

path coefficients, a and b) of the mediator (numeral-ordering) that
accounts for some portion of the direct effect c observed between the
original predictor (ANS-acuity) and the outcome (mental-arithmetic)
variables. The remaining (unmediated) direct effect is denoted c’. Note
that, in this framework, the model is constrained by the assumption that
c = ab + c0 . Unlike in a standard multiple regression analysis, we are
explicitly asking what portion of the relation between ANS-acuity and
mental-arithmetic that can be accounted for by the mediating variable
(numeral-ordering). Results indicate full (ab is significant but c0 is not) as
opposed to partial (when both ab and c0 remain significant) mediation.
finding in keeping with the view that relative numerical
order in symbols is derived at least in part from quantity
representation in the ANS. As seen in Fig. 3, the mediation
analysis (Preacher & Hayes, 2008)2 was consistent with our
2 We employed the bootstrapping method (Preacher & Hayes, 2008). In
this method, one generates percentile-based confidence-intervals (CIs) for
indirect effects (ab) by a simulated resampling (1000 iterations in the
current study) of one’s original dataset. Estimating CIs in this manner
allows for asymmetric intervals (above and below the mean estimate) and
thus relaxes the assumption of multivariate normality. In addition, this
method tends to be more robust for small samples.



Table 2
Symbolic number-ordering ability regressed on several individual differ-
ence variables (see Table 1 for abbreviations/variable details). Overall
model fit: adj. R2 = .505.

Predictor b (SE) t (p) rpartial r (p)

LettOrd .5024 (.1153) 4.358 (.000) .532 .601 (.000)
NumComp .3522 (.1110) 3.174 (.003) .417 .492 (.000)
ANS acuity 3.3420 (1.4233) 2.348 (.023) .321 .408 (.002)
WorkMem �.0001 (.0039) �.032 (.975) �.005 .007 (.610)
NumRecog .0003 (.0004) .815 (.419) .117 .185 (.180)
Constant �.6911 (.5467)
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main hypothesis: the relation between ANS acuity and com-
plex mental-arithmetic performance was fully mediated by
symbolic number-ordering ability. This was true even when
controlling for all covariate factors shown in Table 1. Note
also that ANS acuity did not mediate the relation between
numeral-ordering and mental-arithmetic performance
(p = .562).

The numeral-ordering task devised here captures a
large portion of complex mental-arithmetic variance (Ta-
ble 1). Why? One view is that number-ordering combines
three important components of arithmetic: ANS acuity,
symbolic number representation (numeral-comparison
task), and ordering ability in general (letter-ordering task).
Accordingly, in a multiple regression analysis in which nu-
meral-ordering is treated as the dependent variable, re-
sults showed unique variance captured by ANS acuity,
symbolic number representation, and general ordering
ability (Table 2).
3. Discussion

We provide the first evidence that representing relative
order in numerical symbols serves as an important inter-
mediary step that links the ANS and more complex arith-
metic skills. In addition to predicting complex mental-
arithmetic ability, ANS acuity also predicted more efficient
symbolic number-ordering ability (a in Fig. 3). Further-
more, individuals who were best at processing this ordinal
information showed the best mental-arithmetic perfor-
mance (b in Fig. 3; also Fig. 2, Table 1). Crucially, as seen
in Table 1, this result obtained even when controlling for
general cognitive (working-memory, letter-ordering abil-
ity) and several related numerical factors (e.g., ANS acuity
and numeral recognition and comparison). Thus, while nu-
meral-ordering is comprised of several related numerical
and ordinal factors (Table 2), the relation between sym-
bolic number-ordering ability and complex mental-arith-
metic goes beyond the sum of these constituent parts.
Finally, symbolic number-ordering ability fully mediated
(or accounted for) the relation between ANS acuity and
mental-arithmetic performance (ab in Fig. 3). The media-
tion analysis results are of particular interest, given recent
work demonstrating a link between ANS acuity and math-
ability in kindergarteners (Gilmore et al., 2010) and young
adolescents (Halberda et al., 2008). Our data replicate and
extend these results to college-age young adults in a
demanding mental-arithmetic task (c in Fig. 3).
However, our data provide an important revision to the
straightforward notion that the ANS serves as a precursor
to more complex numerical abilities: a more complete
understanding of this link requires an accounting of how
symbolic quantities are understood in terms of their rela-
tive order. We see this not as a rejection but as a refine-
ment of the hypothesis that the ANS is co-opted for more
complex math. For instance, consider the link between
ANS acuity and numerical ordering ability (a in Fig. 3):
those with higher ANS acuity also showed better numer-
al-ordering ability. One of the ways in which the ANS
serves as a launching pad for number processing may be
by giving people a sense not only of ‘how much’ (cardinal-
ity) but also of ‘which position’ (ordinality) (Berteletti,
Lucangeli, Piazza, Dehaene, & Zorzi, 2010). This latter sense
of order may then be codified and brought to the fore in the
acquisition of numerical symbols (Lyons & Ansari, 2009;
Lyons & Beilock, 2009). Consistent with this view, the mul-
tiple regression results shown in Table 2 indicate that ANS
acuity, symbolic quantity representation, and general sym-
bol-ordering ability each contribute separate variance to
symbolic number-ordering ability. In other words, it is
precisely by combining these sources that symbolic num-
ber-ordering serves as an excellent candidate for linking
models of ANS representation with higher math abilities.
We therefore propose that an emphasis on the relations
between symbols provides the associative building blocks
for the system of symbol-symbol relations that underlie
complex math in general (Nieder, 2009).

A note of caution: Our model does not by itself allow for
inference of how all relevant developmental factors unfold.
For instance, while considerable evidence has accrued sug-
gesting an early link between the ANS and higher numeri-
cal abilities (e.g., Berteletti et al., 2010; Gilmore et al.,
2010; Halberda et al., 2008; Piazza et al., 2010), children’s
ability to encode and understand ordinal information in a
numerical context may also depend on their grasp of the
relation between counting and cardinal principles. One
view is that this relation may develop first in the subitizing
system (via knowledge of object-file indexical pointers),
and transfer only later to larger numbers that are typically
represented primarily in the ANS (Le Corre & Carey, 2007).
While the current dataset cannot distinguish between
these two hypotheses, it is worth noting that the regres-
sion analysis reported in Table 1 reflects a robust and un-
ique relation between numeral-ordering and complex
mental-arithmetic abilities. Thus, regardless of its origin,
one’s mastery of symbol-symbol ordinal associations be-
tween numbers robustly and uniquely predicts one’s com-
plex mental-arithmetic ability. Further work aimed at
clarifying exactly how and why this is so may provide a
firm foothold for understanding the likely complex relation
between basic number representation and higher math
abilities more generally. In sum, the current data provide
strong grounds for hypothesizing that the path to higher
math-abilities in children – whether it begins in the ANS
or the subitizing system – proceeds in part via acquisition
and mastery of ordinal relations among numerical
symbols.

To summarize, we propose that representation of order
in numerical symbols serves as an ideal stepping stone
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between the ANS and higher math abilities because (1)
ordinality is a property that appears to link the ANS with
symbolic numbers, and (2) ordinal associations between
symbolic numbers likely serve as an important precursor
to the more complex symbol–symbol associations that
underlie much of mental arithmetic. Given strong evidence
that the ANS is deeply rooted in our evolutionary history
(Nieder & Dehaene, 2009) and the fact that symbolic math-
ematics is a rather recent human cultural invention (Ifrah,
1999; Zhang & Norman, 1995), our results may prove use-
ful in understanding how evolution has interacted with
culture to generate complex representations of abstract
numerical relationships. Moreover, the strong link be-
tween symbolic number-ordering ability and complex
mental-arithmetic carries important implications for
designing math-education curricula that propel students
from the ANS to everyday arithmetic competence. Sym-
bolic number-ordering ability could also serve as a simple
and easily administered ‘marker’ (Goswami, 2006) that
captures important information about an individual’s cur-
rent arithmetic skills.
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