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ABSTRACT— Recent work has demonstrated that how we
process the relative order—ordinality—of numbers may be
key to understanding how we represent numbers symboli-
cally, and has proven to be a robust predictor of more sophis-
ticated math skills in both children and adults. However, it
remains unclear whether numerical ordinality is primarily a
by-product of other numerical processes, such as familiarity
with overlearned count sequence, or is in fact a fundamen-
tal property of symbolic number processing. In a sample of
nearly 1,500 children, we show that the reversed distance
effect—a hallmark of symbolic ordinal processing—obtains
in children as young as first grade, and is larger for less famil-
iar sets of numbers. Furthermore, we show that the children’s
efficiency in evaluating the simplest ordered sequences (e.g.,
2-3-4, 6-7-8) captures more unique variance in mental arith-
metic than any other type of numerical sequence, and that
this result cannot be accounted for by counting ability.
Indeed, performance on just five such trials captured more
unique mental arithmetic variance than any of several other
numerical tasks assessed here. In sum, our results are consis-
tent with the notion that ordinality is a fundamental property
of how children process numerical symbols, that this prop-
erty helps underpin more complex math processing, and that
it shapes numerical processing even at the earliest stages of
elementary education.

In the field of numerical cognition, relative order—
ordinality—has until recently been a largely overlooked
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property of numbers. This is true of efforts to understand
how the brain represents basic numerical representations,
as well as research into how these basic processes underpin
more sophisticated mathematical thinking. In the past few
years, there has been a steady uptick in work on how we
process the relative order of numbers (e.g., Brannon, 2002;
Colomé & Noël, 2012; Delazer & Butterworth, 1997; Fias,
Lammertyn, Caessens, & Orban, 2007; Franklin & Jonides,
2009; Franklin, Jonides, & Smith, 2009; Jou, 2003; Knops
& Willmes, 2014; LeFevre & Bisanz, 1986; LeFevre, Kulak,
& Bisanz, 1991; Lyons & Beilock, 2009, 2011, 2013; Lyons,
Price, Vaessen, Blomert, & Ansari, 2014; Rubinsten & Sury,
2011; Turconi, Campbell, & Seron, 2006; Turconi & Seron,
2002; Zorzi, Di Bono, & Fias, 2011). Intriguingly, this work
suggests that ordinality may be a key to understanding how
we represent numbers symbolically (e.g., as Indo-Arabic
numerals; Delazer & Butterworth, 1997; Lyons & Beilock,
2009, 2013; Turconi & Seron, 2002). Moreover, how effi-
ciently an individual can assess the relative numerical
order of a set of numbers has proven to be a strong and
robust predictor of more sophisticated math skills, such as
mental arithmetic, in both adults (Lyons & Beilock, 2011)
and children (Lyons et al., 2014). For instance, Lyons and
Beilock (2011) showed that adults’ performance on a simple
numerical-ordering task predicted nearly half the variance
in their performance on a complex mental arithmetic task.
This result remained robust even after controlling for several
potentially confounding factors, such as working memory,
non-numerical ordering, and several other numerical tasks.
Lyons et al. (2014) showed in a large sample of Dutch
children that by Grade 6 numerical-ordering performance
was a better predictor of mental arithmetic performance
than seven other numerical tasks (and remained so even
after controlling for non-numerical factors as well, such as
reading ability and nonverbal intelligence).

Volume 9—Number 4 © 2015 International Mind, Brain, and Education Society and Wiley Periodicals, Inc. 207



Development of Ordinality

Such a robust and unique predictor of a crucial develop-
mental skill—arithmetic—is likely to be of keen interest to
researchers and educators alike. However, there is currently a
gap in our understanding of precisely why the ability to judge
the relative order of a few numerals is so strongly related
to more sophisticated math processing. One approach is to
look for other known cognitive factors that might explain
this relationship, such as working memory, reading ability,
other numerical factors, and so on. As noted above though,
many such factors have already been shown to fall short of
fully accounting for the relation between ordering and arith-
metic. Although one could theoretically never exhaust the
infinite set of possible external factors, work to date does
suggest that there may be something unique to the ordinal-
ity of numbers, and so perhaps one might instead look within
the ordinal processing task itself.

In other words, we can ask whether there are subcom-
ponents of the task we use to measure numerical-ordering
proficiency which capture more or less variance in arith-
metic ability. By knowing which components are most pre-
dictive, we can thus refine our search for the underlying
mechanisms that lie closest to the heart of our ultimate
goal—understanding how and which basic numerical skills
underpin more complex ones. Note that this approach is
not without precedent. For instance, Gilmore et al. (2013)
decomposed a simple nonsymbolic quantity comparison
task (which of two dot arrays contains more dots) into tri-
als where the non-numerical, continuous parameters of the
arrays were either congruent or incongruent with the goal
of the task. The authors found it was the incongruent tri-
als that largely accounted for the widely reported relation
between performance on the comparison task and mental
arithmetic. This in turn led the authors to consider cognitive
control as a key factor in explaining this relation—an hypoth-
esis that was confirmed by subsequent analysis. Here, our
intention is similar: by decomposing the ordering task into
subsets of trials, we can potentially begin to dig deeper into
understanding the relation between numerical ordering and
arithmetic.

This approach is not without its pitfalls, however—one of
which is collinearity. Performance on subconditions within a
task can often be highly correlated. Multicollinearity reduces
the amount of information that may contribute to a given
regression model, which can be thought of as effectively
reducing the sample size (Baguley, 2012). In this study, we
overcome this limitation by assessing numerical ordinal and
mental arithmetic processing in a large sample of nearly
1,500 Dutch children (over 200 children in each grade, 1–6).

A second concern is theoretical: how should subsets of
trials be identified—that is, which subconditions should be
considered? A classic result in the field of numerical cog-
nition is that when comparing two numbers, performance
worsens (longer response times, higher error rates) as

the numerical distance between the two numbers decreases
(e.g., performance when comparing {4, 5} is worse than when
comparing {3, 5}; Buckley & Gillman, 1974; Moyer & Lan-
dauer, 1967). When assessing the relative order of numbers,
however, this canonical effect is sometimes reversed: perfor-
mance worsens as the numerical distance between numbers
increases (e.g., performance is better when assessing {4, 5, 6}
relative to {3, 5, 7}; Franklin & Jonides, 2009; Franklin et al.,
2009; Lyons & Beilock, 2013; Turconi et al., 2006). Interest-
ingly, this effect is only seen when the numbers in question
are in the correct order (e.g., increasing, from left-to-right,
as in 1-2-3, but not 2-1-3). Furthermore, this result is
specific to symbolic numbers (i.e., it is not observed for
ordered dot arrays; Lyons & Beilock, 2013). This latter point
is important because here we are concerned specifically
with the previously reported strong relation between sym-
bolic number-ordering ability and mental arithmetic. More
broadly, the reversed distance effect appears to distinguish
symbolic ordinal processing from other types of numerical
processing, which in turns suggests a clear framework for
decomposing the ordinal task by distance and whether or
not the items are in the correct order.

Note that previous work showing reversed distance
effects has primarily focused on highly literate adults, whose
number-symbol systems are likely relatively mature and
overlearned. It remains something of a question, then,
whether children toward the beginning of formal education
and experience regularly using number symbols in math
contexts, such as arithmetic, will also show a reversal of the
distance effect. In other words, we face both the obligation
and the opportunity to examine whether reversed distance
effects obtain in elementary-age children. If so, this would
suggest that how we process ordinality in symbolic numbers
is distinguished from other types of numerical processing
from the earliest stages when mastery over these symbols
has only just begun.

Perhaps the current leading explanation for the reversed
distance effect is that it is a by-product of familiarity
with a recited sequence (e.g., the counting or alphabetical
sequence: Bourassa, 2014; Franklin et al., 2009; LeFevre &
Bisanz, 1986; Lovelace & Snodgrass, 1971; Lyons & Beilock,
2013; Turconi et al., 2006). That is, one directly retrieves
and matches an ordered sequence with a subset of the
count list: for instance, 1-2-3 and 5-6-7 are more familiar
and thus more rapidly identified as “in-order” than 1-3-5
or 4-6-8. This view suggests that the reversed distance
effect should be reduced or even eliminated for less familiar
number sequences. Reduced familiarity should slow the
retrieval process, and may even lead one to revert to the
more cumbersome process of directly comparing each pair
of numbers (which in turn would predict more canonical
distance effects; Turconi et al., 2006). Here, we examined
ordinal processing for both single- and double-digit number
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sequences. Double-digit sequences (e.g., 29-30-31), being
less familiar, should thus show a reduced reversal of or even
canonical distance effect (note that double-digit sequences
in the current data set also crossed decades to prevent
children from simply ignoring the tens digit; Franklin et al.,
2009). Alternatively, if knowing their correct relative order
is a fundamental property by which we process number
symbols (and not just an incidental by-product of rehears-
ing familiar chunks of the count list), then one would expect
the fallback or default mode of ordinal processing to be not
comparison, but ordinality itself. In this view, one would
expect reversed distance effects to be larger for double-
relative to single-digit trials.

To summarize, our central aims in this study are twofold.
(1) We examine the nature of symbolic ordinal processing of
numbers in children at the beginning of their formal educa-
tion. We do so by testing for the presence of reversed dis-
tance effects in children as young as 6 years, and whether
or not these effects are attenuated or accentuated when pro-
cessing less familiar sequences. (2) We examine which sub-
components of ordinal processing capture the most unique
variance with respect to more complex math processing—in
this case, mental arithmetic. Doing so will help to pinpoint
the crucial cognitive factors that link ordinal and other types
of mental math, and may lead to more targeted recommen-
dations for researchers and teachers alike in designing math
interventions and curricula.

METHODS

Participants
The data collection protocol was approved by the ethics
review board at Maastricht University. A total of 1,512 Dutch
children in Grades 1–6 completed the ordering task. Chance
performance is difficult to interpret, so we removed chil-
dren who performed at chance on any of the tasks for which
chance could be defined (>49% error rates). This removed 24
children from the analysis (1.59%); from each grade, respec-
tively, 16 (6.83%), 2 (0.88%), 2 (0.75%), 4 (1.43%), 0, and 0. The
overall final sample size was N = 1,488 (775 female); Grade 1
n= 218 (100 female), Grade 2 n= 226 (117 female), Grade 3
n= 266 (140 female), Grade 4 n= 276 (148 female), Grade 5
n= 257 (137 female), Grade 6 n= 245 (133 female).

Children in all grades completed the ordering task using
single-digit numbers. Stimuli for children in Grades 2–6 also
included double-digit numbers (see task description below).
Hence, for analyses involving two-digit numbers, the sample
was restricted to Grades 2–6 only.

In addition, for analyses examining arithmetic achieve-
ment, we were unable to collect data on the arithmetic task
from eight additional children (1, 1, 0, 1, 4, 1 children in
Grades 1–6, respectively), so these analyses proceeded with

an N of 1,480. It is important to note that the data reported
here are part of a larger data set, a portion of which has been
previously described in Lyons et al. (2014). Crucially, both
the theoretical questions and data analyses described here
are completely separate from those in Lyons et al. Further-
more, the sample ns do not match exactly those in Lyons
et al. This is because the previous study relied upon a larger
set of tasks; requiring above chance performance on the
wider set of tasks thus resulted in omission of a few more
participants in each grade in that article.

Procedure
Children were from seven different primary schools in
the Netherlands. Parents denied consent by returning an
enclosed nonconsent form. Trained project workers admin-
istered all measures to children separately in a quiet room
at school. Data were collected in a single session for Grades
1 and 2 and Grades 5 and 6, and in two sessions separated
by no more than 5 days for Grades 3 and 4.

The Ravens and arithmetic achievement tasks were
paper-and-pencil tests. All other measures were computer-
ized. In all tasks, children were told to respond as quickly
and accurately as possible. No feedback was given during
the main experimental trials.

Ordering Task
In the ordering task, children saw three numbers presented
horizontally as Indo-Arabic numerals. Half the time, the
three numbers were all in numerically increasing order
(left–right). In the remaining trials, numbers were either
in decreasing or mixed order. Children were instructed to
push a button with their left hand if the numbers were all
increasing (in-order) or a button with their right hand if they
were not (not-in-order). Stimuli remained on the screen until
the child responded. There were 28 single-digit trials and
28 double-digit trials (note that children in Grade 1 com-
pleted only the single-digit trials). The distances between
numbers were roughly evenly divided across trials into dis-
tances of 1–3, where absolute distance was always symmet-
rical around the median number and distance for a given
trial was calculated as (max−min)/2. Hence, for a given
cell (order× distance× digits), there were four or five trials.
Double-digit trials all crossed a decade unit (single-digit tri-
als, by definition, did not). A complete list of all trials can
be found in Table A1. Trial order was randomized. Reliabil-
ity (computed for combined performance; see below) on this
task was high, for both one-digit (Cronbach’s α= .938) and
two-digit trials (Cronbach’s α= .960).

Performance was computed as a composite of response
times and error rates (as in Lyons et al., 2014). Combining
measures provides a more complete picture of overall perfor-
mance in a given task; it halves the number of statistical tests
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Table 1
Mean Performance on the Ordering Task for Single-Digit Trials, Broken Down by Grade and Subcondition

Subcondition
Grade i1 i2 i3 n1 n2 n3

1 4,995 4,928 5,870 5,219 4,934 4,650
(162) (181) (248) (196) (172) (149)

2 3,237 3,379 3,762 3,532 3,541 3,478
(94) (114) (144) (113) (127) (102)

3 2,522 2,685 2,999 2,839 2,870 2,935
(64) (75) (94) (83) (91) (87)

4 2,289 2,361 2,522 2,444 2,503 2,571
(72) (63) (76) (72) (80) (82)

5 1,982 2,005 2,187 2,117 2,173 2,244
(66) (69) (76) (72) (87) (91)

6 1,577 1,665 1,830 1,831 1,880 1,818
(41) (41) (57) (60) (61) (61)

Overall 2,701 2,773 3,114 2,929 2,923 2,898
(45) (47) (60) (51) (50) (45)

Note: Overall is the average across grades (see also Figure 1a). Values in parentheses are standard errors of the mean.
i= in-order, n=not-in-order; numbers indicate numerical distance.

needed for the analysis as a whole, thus reducing the risk
of false positives, and it implicitly controls for any variation
in speed-accuracy trade-offs across tasks. Measures were
combined according to the formula: P =RT(1+ 2ER), where
a higher value indicates worse performance. In essence,
one can interpret this measure as reaction times (ms) after
they have been penalized for inaccurate performance. The
scale runs linearly between a child’s actual average response
time (where P =RT) for perfectly accurate performance (0%
errors) and double that value (P = 2RT) for chance perfor-
mance (50% errors). This method is identical to that used in
Lyons et al. (2014).

Mental Arithmetic
The arithmetic task was the standardized TempoTest
Automatiseren (TTA) of basic arithmetic ability (De Vos,
2010). Children were administered two worksheets—one
containing 50 addition and the other containing 50 sub-
traction problems. Children were instructed to calculate
as many problems as possible within 2 min per worksheet.
Scores were the total number of correctly answered prob-
lems across both worksheets. Reliability for this task is high
(.92; Janssen, Verhelst, Engelen, & Scheltens 2010).

Additional Measures
For analyses where we attempted to reproduce the final
model in Lyons et al. (2014), we included additional mea-
sures from the final model of that article. These were
six additional numerical tasks: numeral comparison, dot
comparison, object matching, counting, number-line esti-
mation, and dot-quantity estimation; two non-numerical

tasks: nonverbal intelligence and reading scores; and age.
Owing to space limitations, descriptions of these are
not listed here, but can be found in Appendix 2 (see
also Lyons et al., 2014). Finally, note that, in keeping
with Lyons et al. (2014), for those analyses, we removed
an additional 89 participants (N = 1,391). Those addi-
tional participants were either missing data or performed
at chance on one or more of the additional measures
noted above.

RESULTS

(Reverse) Distance Effects
We begin by considering single- and double-digit order-
ing trials separately because double-digit data were only
available for Grades 2–6. We explicitly contrast single- and
double-digit effects at the end of this section.

Single-Digit Trials
Our primary interest in this analysis was the potential
reversal of distance effects. As such, our main focus
was the factor Distance and its modulation by Order.
Data were analyzed in a 2(Order: in-order, not-in-order;
within-participants)× 3(Distance: 1–3; within-participants)
× 6(Grade: 1–6; between-participants) analysis of vari-
ance (ANOVA). A complete table of means and stan-
dard errors can be found in Table 1. Figure 1a shows
Order×Distance, averaged across grades. All main effects
and interactions were highly significant (ps< 6.8E-9,
ds> .25), except for the main effect of Order, F(1,
1,482)= 2.63, p= .105, d = .08, and the Distance×Grade
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Fig. 1. (Reversed) distance effects for (a) single-digit and (b) double-digit trials. Data are collapsed across all grades (1–6 for single digit;
2–6 for double digits; see text and Tables 1 and 2 for grade-wise details).

interaction, F(10, 2,964)= 1.43, p= .160, d = .14. Crucially,
our primary effect of interest, the Order×Distance
interaction, was highly significant: F(2, 2,964)= 32.72,
p= 8.8E-15, d = .30.

Examining Distance×Grade ANOVAs separately for
each order, we found a main effect of Distance only for
in-order trials. In-order: F(2, 2,964)= 54.07, p= 8.6E-24,
d = .38; not-in-order: F(2, 2,964)= 0.71, p= .494, d = .04.
The in-order effect of Distance was well fit by a linear
contrast: F(1, 1,482)= 80.36, p= 9.2E-19, d = .47 (quadratic
effect, F = 17.05). Figure 1a clearly shows that this was
driven by a reversal of the distance effect, with performance
worsening as distance increased. It is important to know,
however, whether this effect was driven by just one or two
grades (e.g., only older children), or whether it is a consistent
effect which is present in all grades, including children as
young as first graders. This question is especially pertinent
because the in-order effect of Distance was qualified by
an interaction with grade, F(5, 1,482)= 4.56, p= 3.9E-4,
d = .25. A glance at Table 1 suggests an effect consistent
across grades, so we next verified that a reversed distance
effect (specifically, the linear contrast effect over Distance)
obtained for each grade separately. It did: all Fs> 9.46, all
ps< .002,1 all ds≥ .38 (all linear effects> quadratic effects).
The interaction with grade appears to have been driven
by larger effects of Distance in Grades 3 and 6 (ds= .75),
compared with ds of .38–.52 for the other grades. Also of
interest is that the reversed distance effect in the youngest
children (Grade 1, d = .49) was comparable to that of the
other grades.

To summarize the above results, symbolic ordinal pro-
cessing of single-digit numbers in children appears to be
quite similar to that seen in adults. Specifically, when stimuli
are in the correct numerical order, there is a clear rever-
sal of the distance effect. Note that this effect does not
appear to be driven solely by trials with a distance of 1,
but instead shows a consistent linear trend, at least up to

distance 3 (all distances were significantly different from one
another). Finally, reversed distance effects appeared to be
relatively stable across grades—easily obtaining significance
in all grades measured here, even in Grade 1.

Double-Digit Trials
As with single-digit trials, our primary interest
in this analysis was the potential reversal of dis-
tance effects. As such, our main focus was the fac-
tor Distance and its modulation by Order. Data
were analyzed in a 2(Order: in-order, not-in-order;
within-participants)× 3(Distance: 1–3; within-participants)
× 5(Grade: 2–6; between-participants) ANOVA. A com-
plete table of means and standard errors can be found
in Table 2. Figure 1b shows Order×Distance, aver-
aged across grades. Consistent with single-digit trials,
all main effects and interactions were highly significant
(ps< 1.8E-5, ds> .24), excepting the main effect of Order,
F(1, 1,265)= 0.64, p= .424, d = .04, and the Order×Grade,
F(4, 1,265)= 1.64, p= .163, d = .14, and Distance×Grade,
F(8, 2,530= 1.41, p= .187, d = .13, interactions. Cru-
cially, our primary effect of interest, the Order×Distance
interaction, was highly significant: F(2, 2,530)= 246.30,
p= 1.8E-98, d = .88.

Examining Distance × Grade ANOVAs separately for
each order, we found main effects of Distance for
both in-order and not-in-order trials. In-order: F(2,
2,530)= 222.40, p= 1.1E-89, d = .84; not-in-order: F(2,
2,530)= 49.14, p= 1.2E-21, d = .39. In both cases the effect
of Distance was well fit by a linear contrast. In-order: F(1,
1,265)= 371.96, p= 7.3E-73, d = 1.08 (quadratic effect:
F = 70.91); not-in-order: F(1, 1,265)= 96.21, p= 6.1E-22,
d = .55 (quadratic effect: F = 6.91). Figure 1b clearly shows
that this was driven by a reversal of the distance effect
for in-order trials (performance worsened as distance
increased) and a canonical distance effect for not-in-order
trials (performance improved as distance increased). The
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Table 2
Mean Performance on the Ordering Task for Double-Digit Trials,
Broken Down by Grade and Subcondition

Subcondition
Grade i1 i2 i3 n1 n2 n3

2 3,729 4,643 4,924 4,738 4,236 4,181
(129) (155) (172) (155) (136) (148)

3 2,927 3,754 3,859 3,665 3,340 3,305
(79) (105) (107) (101) (109) (95)

4 2,566 3,161 3,255 3,246 3,034 2,859
(83) (84) (92) (87) (95) (84)

5 2,146 2,708 2,695 2,780 2,540 2,431
(62) (91) (77) (82) (83) (82)

6 1,757 2,253 2,267 2,395 2,186 2,049
(51) (55) (61) (67) (59) (63)

Overall 2,608 3,282 3,375 3,341 3,048 2,945
(41) (50) (53) (50) (48) (47)

Note: Overall is the average across grades (see also Figure 1b). Values in paren-
theses are standard errors of the mean.
i= in-order, n=not-in-order; numbers indicate numerical distance.

in-order effect of Distance was qualified by an interaction
with Grade, F(4, 1,265)= 9.61, p= 1.2E-7, d = .35; the
not-in-order effect of Distance was not, F < 1. As with
single-digit above, we next verified that a reversed distance
effect (specifically, the linear contrast effect over Distance
for in-order trials) obtained for each grade separately. It
did: all Fs> 77.66, all ps< 2.0E-16,2 all ds≥ 1.06 (all linear
effects> quadratic effects). The interaction with Grade
appears to have been driven by slightly larger effects of
Distance in Grades 3 and 6 (ds= 1.26–1.29), compared
with ds of 1.06–1.10 for the other grades. Also of interest
is that the reversed distance effect in the youngest chil-
dren (Grade 2, d = 1.06) was comparable to that of the
other grades.

To summarize the above results, symbolic ordinal pro-
cessing of double-digit numbers in children appears to be
similar to that seen in single-digit numbers. Specifically,
when stimuli are in the correct numerical order, there is a
clear reversal of the distance effect. As with single-digit num-
bers, this effect exhibited a linear trend (all distances were
significantly different from one another), and was relatively
stable across grades. We next examine whether the magni-
tude of reversed distance effects was greater or lesser for
double- relative to single-digit trials.

Comparing Single- and Double-Digit Trials
One of our key questions concerns what happens to
the reversal of the distance effect when the numbers
involved become less familiar. If the reversal of distance
effects in ordinal tasks is largely driven by familiarity,
then we would expect the magnitude of this effect to be
reduced in double-digit trials, as these numbers are far less

frequent and thus also likely to be less familiar, especially to
elementary-age children (Dehaene & Mehler, 1992). Con-
versely, if ordinal relations are a fundamental part of how
we process and understand symbolic numbers, then one
might expect children to fall back on this more basic process
as items become less familiar. This latter account predicts
that double-digit trials should show a larger reversal of the
distance effect.

For simplicity, because the current hypotheses specifi-
cally concern reversed distance effects, and these effects
are seen only in the in-order trials, we limited the analysis
below to in-order trials (results are highly similar whether
one includes not-in-order trials in the model or not). We
thus computed a 2(Digits: single, double)× 3(Distance:
1–3)× 5(Grade: 2–6) ANOVA. All effects were highly sig-
nificant (ps< 4.6E-8, ds> .28), excepting the three-way
Digits×Distance×Grade interaction, F(8, 2,530)= 1.08,
p= .374, d = .12. Crucially, our primary effect of interest,
the Digits×Distance interaction, was highly significant:
F(2, 2,530)= 66.63, p= 6.3E-29, d = .46. An examination of
Figure 1 shows that the decrease in performance (recall that
a greater value indicates worse performance) from distance
1 to distance 3 in double digits (M = 767, SE = 41) was nearly
twice that seen in single digit (M = 413, SE = 48). Note also
that this cannot be explained as simply due to overall worse
performance on double-digit trials, as this result was even
stronger after normalizing distance scores, respectively,
in terms of average single- or double-digit increasing per-
formance [(i3–i1)/mean(i1,i2,i3)]: double digits, M = .240,
SE = .010; single digit, M = .114, SE = .011. In sum, the data
clearly show that reversed distance effects are significantly
larger for double- relative to single-digit trials, which is con-
sistent with the ordinality hypothesis above. Note also that
the lack of a three-way interaction indicates this result was
not modulated by—that is, was consistent across—different
grades.

Predicting Arithmetic
Distance effects (next section) were computed for each
participant by correlating3 performance with distance
across trials (this was performed separately for in-order and
not-in-order trials, as well as single-digit and double-digit
trials). Note that a positive value indicates a reversal of the
distance effect and a negative value indicates a canonical
distance effect. For all other regression models (remaining
sections), because the dependent measure (Arithmetic) was
scored with a higher value indicating better performance,
for ease of interpretation, performance scores were multi-
plied by −1 before being entered into regression analyses.
This was so that a positive relation meant better perfor-
mance on a given measure was related to better arithmetic
performance.
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(Reversed) Distance Effects
We first examined whether reversed distance effects (1) are
predictive of mental arithmetic performance and (2) can
help to explain the strong relation between ordering and
arithmetic (Lyons & Beilock, 2011; Lyons et al., 2014). To
begin with, better overall performance on both single- and
double-digit ordering trials was highly correlated with men-
tal arithmetic (single digit: r1,478 = .686, p= 2.0E-206; double
digits: r1,261 = .635, p= 8.3E-144), capturing over 40% of the
variance in each case.

For single-digit trials, both in-order and not-in-order
distance effects were positively correlated with arithmetic
performance (greater reversal of the distance effect was
related to higher arithmetic scores; in-order: r1,478 = .108,
p= 3.0E-5; not-in-order: r1,478 = .084, p= 1.2E-3). For
double-digit trials, this was the case only for in-order
trials (in-order: r1,261 = .113, p= 5.9E-5; not-in-order:
r1,261 =−.034, p= .228). In all cases, however, correlations
were substantially smaller than those seen for overall order-
ing performance, accounting at most for only about 1.3% of
arithmetic variance. Moreover, in no case did reversed dis-
tance effects mediate the relation between overall ordering
and arithmetic performance (all ps> .10).

In other words, computing reversed distance effects based
on a combination or derivation of subconditions proved
of little use in explaining the relation between numeri-
cal ordering and arithmetic performance. This is perhaps
not surprising as recent work has demonstrated that such
derived measures—e.g., distance effects, ratio effects, Weber
fractions, and so on—in basic numerical tasks are typically
less reliable predictors of math achievement than is simple
mean performance on such tasks (Dietrich, Huber, & Nuerk,
2015; Inglis & Gilmore, 2014). For current purposes, the
poor predictive power of reversed distance effects simply
underscores the need for a different tack. In the following
sections, we instead decompose ordering performance into
its various subconditions and examine which of these cap-
tures the most unique variance in mental arithmetic scores.

Single-Digit Trials
Single-digit ordering trials were divided into six sub-
conditions based on whether stimuli were in-order (i),
not-in-order (n) and distance (1–3) (subconditions are writ-
ten hereafter as i1, i2, i3, n1, n2, n3). Average performance
for each participant was computed across the four or five
trials in each subcondition. Correlations with arithmetic
performance for each subcondition were .641, .575, .544,
.562, .535, .534 (respectively, all df s= 1,478, ps≤ 6.0E-110),
indicating consistently high correlations for all subcondi-
tions, near to that seen for the ordering task overall (.686)
and capturing about 29%–41% of arithmetic variance. The
correlation for i1 was significantly greater than that for

Table 3
Single-Digit Regression Model Results

Predictor F p

i1 87.36 3.3E-20
i2 10.72 1.1E-03
i3 0.05 8.3E-01
n1 7.81 5.3E-03
n2 0.02 8.9E-01
n3 0.04 8.5E-01
i1×Grade 11.95 2.4E-11
i2×Grade 2.64 2.2E-02
i3×Grade 2.77 1.7E-02
n1×Grade 2.58 2.5E-02
n2×Grade 2.85 1.5E-02
n3×Grade 0.94 4.5E-01
Grade 126.05 8.0E-111
Intercept 5910.00 <1.0E-999

Note: Overall model fit: R2 = .730, adjusted R2 = .722. For grade and all interac-
tion terms, numerator df = 5; for all other predictors, df = 1. Error (denominator)
df = 1,438.

the other five subconditions (all ps< 1.0E-4), suggesting
that this subcondition might be especially closely related to
arithmetic processing. On the other hand, these differences
are rather subtle (.066–.107), and obtain significance here
primarily due to the particularly large sample. Moreover,
it may be of greater interest to examine unique contribu-
tions made by each subcondition to arithmetic variance.
That is, we expect all of the subconditions to capture some
degree of common arithmetic variance; however, we want
to know whether any of the individual subconditions cap-
tures substantially more additional variance beyond this
common core.

To test this, all six subconditions were entered as simul-
taneous predictors of arithmetic performance, along with
Grade (six levels, 1–6), and the interaction with Grade for
each subcondition. These interaction terms effectively tested
for developmental effects: they tested whether the slope of
the relation between a given subcondition and arithmetic
varied as a function of grade. Model results can be found
in Table 3. Collinearity was within acceptable limits (all
variance inflation factors [VIFs]≤ 2.54, where a VIF> 10 is
typically viewed as problematic; e.g., Baguley, 2012; Neter,
Wasserman, & Kutner, 1989). The i1 (in-order, distance 1)
subcondition clearly showed the strongest overall unique
predictive value. It also showed the strongest interaction
effect, although all subconditions, save n3, showed a small
but significant interaction effect.

It is important to note that we are talking about unique
variance—that is, variance captured by the i1 subcondition
over and above that captured by the other subconditions.
Indeed, if we simply enter the six subconditions as predic-
tors (for simplicity, leaving out Grade and interactions with
Grade), we find the R2 for the overall model is .488, or only a
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Fig. 2. Unique contributions (in terms of predicting arithmetic performance) of each subcondition at each grade for single-digit trials.
Numbers in parentheses are example trials for each subcondition. Owing to varying degrees of freedom across grades, contributions
are converted to effect sizes (d). Note that d of about ±.25 corresponds to roughly p= .05 for individual grades and d of about ±.10
corresponds to p= .05 for “All.” All: unique contributions when computed across all grades. *Comparison of unique effects (computed
based on “All”): i1 versus each of the other conditions, where * indicates p< 3.0E-7.

bit higher than the raw correlation for the i1 condition from
above: .6412 = .411, and it is quite similar to what we see if
we simply average over all single-digit trials, ignoring sub-
condition: R2 = .471. This is important when interpreting the
results in this section (Table 3, Figure 2): there is variance
common to all subconditions that is predictive of arithmetic
variance. What these analyses show is the contribution each
subcondition makes beyond this common variance, and in
particular, that it is the i1 condition that accounts for most
such unique variance.

Given the strong interaction effect for i1, Figure 2 visual-
izes the unique contributions of each subcondition at each
grade (a separate multiple regression model was run at each
grade), along with the overall effect (i.e., collapsing across all
grades). Given the varying degrees of freedom across grades,
these were converted to effect sizes (ds). In terms of over-
all effects, as with the zero-order correlations above, the
unique predictive value of the i1 condition was significantly
greater than all other subconditions. Moreover, we can see
this predictive value rose sharply between Grades 1 and 2,
and remained consistently higher than the other subcondi-
tions thereafter.

To summarize, single digit, in-order trials at distance 1 (i1,
e.g., 1-2-3, 6-7-8) clearly captured the most unique variance
in arithmetic processing.

Double-Digit Trials
Double digit-ordering trials were subdivided and computed
in the same manner as single-digit trials above. Correlations
with arithmetic performance for each subcondition were

.541, .554, .554, .508, .432, .523 (respectively, all df s= 1,261,
ps≤ 1.4E-58), indicating consistently high correlations for all
subconditions, near to that seen for the ordering task over-
all (.635), and capturing about 19%–31% of arithmetic vari-
ance. No single condition appeared to stand out above the
rest, although in-order subconditions did appear to show
slightly stronger correlations than not-in-order subcondi-
tions. Collapsing across distance, the correlation for in-order
trials (.625) was significantly greater (p= .003) than that for
not-in-order trials (.569).

Turning to unique contributions, these were computed
in the same manner as single-digit trials above. Collinear-
ity was acceptable (all VIFs≤ 2.60). Model results can be
found in Table 4. All subconditions showed significant main
effects, with small but significant interaction effects for i1
and n1. Figure 3 breaks unique contributions down by grade,
although it is difficult to discern an overarching pattern, as is
perhaps indicated by the relatively weak interaction effects.
Looking instead at the overall results, we can see that,
consistent with the zero-order correlations above, it appears
that whether or not trials are in order is the most consistent
effect. As a post-hoc test of this intuition, we can simply
collapse across distance and enter in-order and not-in-order
performances as competing predictors, compute the
partial correlations for each (in-order: rp(1, 260) = .352,
p= 3.5E-38; not-in-order: rp(1, 260) = .168, p= 1.8E-9), and
test whether the former correlation is greater than the latter
(it is: p= 6.6E-7).

To summarize, for double digits, there did not appear
to be any one subcondition that captured overwhelmingly
more unique arithmetic variance than the others (i.e., as
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Table 4
Double-Digit Regression Model Results

Predictor F p

i1 20.31 7.2E-06
i2 18.25 2.1E-05
i3 15.22 1.0E-04
n1 7.20 7.4E-03
n2 6.41 1.1E-02
n3 9.36 2.3E-03
i1×Grade 2.77 2.6E-02
i2×Grade 0.24 9.2E-01
i3×Grade 1.20 3.1E-01
n1×Grade 2.39 4.9E-02
n2×Grade 1.71 1.5E-01
n3×Grade 0.57 6.8E-01
Grade 48.52 6.4E-38
Intercept 6010.03 <1.0E-999

Note: Overall model fit: R2 = .557, adjusted R2 = .545. For Grade and all interac-
tion terms, numerator df = 4; for all other predictors, df = 1. Error (denominator)
df = 1,228.

Fig. 3. Unique contributions (in terms of predicting arithmetic
performance) of each subcondition at each grade for double-digit
trials. Numbers in parentheses are example trials for each subcon-
dition. Owing to varying degrees of freedom across grades, contri-
butions are converted to effect sizes (d). Note that d of about ±.25
corresponds to roughly p= .05 for individual grades and d of about
±.11 corresponds to p= .05 for “All.” All: unique contributions
when computed across all grades. *Comparison of unique effects
(computed based on “All”): None of the individual subconditions
were significantly different from one another, with the exception
that n2 was significantly less than all other subconditions. Instead,
in-order (I) subconditions were overall greater than not-in-order
(N) subconditions, where * indicates p=6.6E-7.

was the case for i1 single-digit trials). Instead, we see that
in-order trials were overall (i.e., regardless of distance) better
predictors than not-in-order trials.

Comparing Single- and Double-Digit Trials
Here, we were concerned with whether any (and which)
of the subconditions, across single- and double-digit trials

Table 5
Model Results When Both Single- and Double-Digit Subconditions
Are Entered Into the Model Together

Predictor F p

i1, 1-digit 53.38 4.9E-13
i2, 1-digit 0.03 8.6E-01
i3, 1-digit 0.28 6.0E-01
n1, 1-digit 0.03 8.7E-01
n2, 1-digit 0.17 6.8E-01
n3, 1-digit 0.03 8.7E-01
i1, 2-digit 6.25 1.3E-02
i2, 2-digit 13.00 3.2E-04
i3, 2-digit 3.17 7.5E-02
n1, 2-digit 2.43 1.2E-01
n2, 2-digit 4.89 2.7E-02
n3, 2-digit 17.13 3.7E-05
Grade 72.26 4.2E-55
Intercept 5975.34 <1.0E-999

Note: Overall model fit: R2 = .548, adjusted R2 = .542. For grade, df = 4; for all
other predictors, df = 1. Error (denominator) df = 1,246.

predicted the most unique arithmetic variance. The most
direct approach is to simply enter all 12 subconditions (the
6 subconditions for each single- and double-digit trials) into
a single regression model. Collinearity was acceptable (all
VIFs≤ 2.78). Results (Table 5) show that the i1 subcondition
was the only single-digit subcondition to account for unique
variance, whereas all of the double-digit subconditions did,
with the exception of n2. On the other hand, the single-digit
i1 condition was the strongest overall predictor, and was
in fact statistically greater than all other subconditions
(all ps< .05). Results were consistent across individual
grades: the single-digit i1 subcondition accounted for sig-
nificant (p< .05) unique variance in four of the five grades
(excepting Grade 5); double-digit n3 obtained just two of
five grades (Grades 2 and 4); no other subcondition obtained
in more than one grade. In sum, considering the sample as
a whole, although more of the double-digit subconditions
captured unique variance, the most such variance was in fact
captured by single-digit i1 trials (e.g., 1-2-3, 6-7-8). More-
over, this subcondition was the most consistent predictor of
arithmetic across individual grades.

Reconstructing Regression Results from Lyons et al. (2014)
The single-digit i1 subcondition was the subcondition most
strongly related to arithmetic—in terms of both raw correla-
tions and amount of unique variance captured. Thus, we next
examined whether this subcondition, alone, could reproduce
one of the central results from Lyons et al. (2014). Over-
all performance on the same numerical-ordering task under
scrutiny here was more predictive of arithmetic scores than
any of the other numerical tasks (see Table 5 of that arti-
cle). To do so, we took the final model from Lyons et al.
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Table 6
Comparing Model Results From Lyons et al. (2014) and the Same Model With the Single-Digit i1 Subcondition Substituted for NumOrd

Predictor F p Predictor F p

NumOrd 63.53 3.3E-15 i1, 1-digit 60.64 1.4E-14
NumComp 46.53 1.4E-11 NumComp 48.67 4.7E-12
DotComp 1.85 1.7E-01 DotComp 1.90 1.7E-01
ObjMatch 34.06 6.7E-09 ObjMatch 36.50 2.0E-09
Counting 17.67 2.8E-05 Counting 21.16 4.6E-06
DotEst 12.68 3.8E-04 DotEst 12.31 4.6E-04
NumLine 42.03 1.3E-10 NumLine 42.92 8.1E-11
Ravens 5.77 1.6E-02 Ravens 4.94 2.6E-02
Reading 37.65 1.1E-09 Reading 41.15 1.9E-10
Age 14.59 1.4E-04 Age 14.81 1.2E-04
NumOrd×Grade 9.80 3.3E-09 NumOrd×Grade 10.65 4.7E-10
ObjMatch×Grade 4.00 1.3E-03 ObjMatch×Grade 4.59 3.7E-04
Counting×Grade 2.35 3.9E-02 Counting×Grade 3.14 7.9E-03
NumLine×Grade 4.72 2.8E-04 NumLine×Grade 4.78 2.4E-04
Grade 55.25 2.4E-52 Grade 54.05 2.8E-51
Intercept 461.35 2.6E-88 Intercept 450.78 1.4E-86

Note: The left-hand side of the table shows final model results from Lyons et al. (2014), where NumOrd indicates performance on the numeral-ordering task, averaged
across all trials (including double-digit, for Grades 2–6). The right side shows the same model with the single-digit i1 subcondition substituted for NumOrd. Overall
model fit on the left: R2 = .8099, adjusted R2 = .8050. Overall model fit on the right: R2 = .8093, adjusted R2 = .8043. Both models: Grade and all interaction terms,
numerator df = 5; for all other predictors, df = 1. Error (denominator) df = 1,355.

(2014), Table 5)4 and reran it substituting the single-digit i1
subcondition for overall ordering performance (“NumOrd,”
in that article).

The left side of Table 6 shows the final model results from
Lyons et al. (2014); the right side of Table 6 shows the same
model with the single-digit i1 subcondition substituted
for overall numeral-ordering performance (NumOrd). The
two models are remarkably similar. Overall model fit was
reduced by less than 0.1% of the variance. Moreover, the
unique F value associated with ordering was reduced from
63.53 to 60.64 (or a corresponding decrease in partial-r
values of less than .005).5 In other words, average perfor-
mance on the 5 single-digit i1 trials was very nearly as
good a predictor of arithmetic performance as ordering
performance averaged across all 56 trials (or 28 in Grade
1). Indeed, it is worth noting that in Lyons et al. (2014),
children’s ordering scores in Grades 2–6 were averaged
over both single- and double-digit trials, which in turn
makes it all the more remarkable that the single-digit i1
trials almost completely reproduces the original result
(note also that results were consistent if restricted to just
Grades 2–6).

In sum, single-digit i1 trials are not just uniquely pre-
dictive of arithmetic performance over and above other
ordering subconditions—as was demonstrated in the pre-
ceding sections. In addition, this subcondition was able to
largely reproduce the Lyons et al. (2014) results, which pit
it against several other numerical and non-numerical tasks.

This remarkable result points to the high diagnostic poten-
tial that can be achieved from just a handful of trials on a
simple numeral-ordering task.

DISCUSSION

That ordinality plays a key role in understanding (espe-
cially symbolic) numerical cognition is becoming increas-
ingly apparent. Whether numerical ordinality is primarily a
by-product of other numerical processes (such as familiar-
ity with overlearned count sequences) or is in fact a funda-
mental property of symbolic numerical processing remains
unclear, however. To address this question, we examined the
nature of symbolic ordinal processing of numbers in children
at the beginning of their formal education.

Lyons and Beilock (2013) demonstrated that the nature
of ordinal processing in symbolic numbers is fundamen-
tally different than in nonsymbolic magnitudes (e.g., arrays
of dots)—at least in literate adults. Moreover, one hallmark
of the ordinal nature of number symbols is the reversed dis-
tance effect. Here, we tested for the presence of reversed
distance effects in a large cohort of children in Grades 1–6.
Overall, children showed robust and consistent reversed
distance effects for ordered (in-order) sequences, and the
magnitude of this effect was similar for first graders as
in older children. To our knowledge, this is the youngest
group of children in which reversed distance effects have
been demonstrated. Crucially, this hallmark of distinctly
symbolic ordinal processing appears to be present even in
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children who have only just begun their formal education.
Although further work is needed to examine ordinal pro-
cessing in number symbols in children who are first acquir-
ing the use of number symbols, the current data suggest
that the influence of ordinality may be present from the
very outset of children’s quest to understand and manipulate
symbolic representations of number. Consistent with this
notion, Lyons and Beilock (2009) trained adult participants
to associate large, approximate quantities with a novel set of
arbitrary visual shapes, and then tested participants’ ability
to use these new “symbols” in various numerical contexts.
Results showed that it was precisely those participants who
reported relying directly on an ordinal strategy (e.g., relative
dot quantities were explicitly used to determine the novel
symbols’ relative order, which was then memorized) that
proved most proficient at using the symbols in numerical
contexts, including both numerical ordering and numerical
comparison (i.e., which novel symbol indicated the greater
quantity of dots). Taken together, it would appear that ordi-
nality plays a fundamental role in how we process and under-
stand number symbols—both as adults and, as we show here,
in the early stages of formal education.

That said, it may be that reversed distance effects are not
so much indicative of a fundamental property of number
symbols but are more just a by-product of other numerical
processes. For instance, one account of reversed distance
effects is that they are essentially a consequence of our famil-
iarity with the count sequence (Bourassa, 2014; Franklin
et al., 2009; LeFevre & Bisanz, 1986; Lyons & Beilock, 2013;
Turconi et al., 2006). However, the current data do not
support this view. Instead, we find that the reversal of the
distance effect is greater for less familiar number sequences.
That is, single-digit numbers, occurring near the beginning
of the standard count sequence and more frequently in gen-
eral (Dehaene & Mehler, 1992), should be rehearsed more
often than large numbers (Rundus, 1971), which in turn
should increase one’s overall familiarity with them (relative
to larger numbers). And yet, we found that reversed distance
effects for double-digit sequences (d = 1.05) were more than
twice as large as those seen for single-digit sequences
(d = .47). As numbers become less familiar, one is more
likely to fall back on ordinal processing. Finally, counting
ability was unrelated to reversed distance effects (r = .036,
p= .162). Taken together, these results are consistent with
the notion that ordinality is a fundamental, and not simply
a derived property of symbolic number processing.

Consistent with this idea, recent work has demonstrated
that numerical ordering ability is a strong and robust predic-
tor of more sophisticated math skills, such as mental arith-
metic in both adults (Lyons & Beilock, 2011) and children
(Lyons et al., 2014). Here, we broke this ordering task into
its constituent components and examined which of these
captured the most unique variance with respect to mental

arithmetic. Results showed that it was performance in the
single-digit i1 subcondition (e.g., 2-3-4, 6-7-8) that was both
the best raw (zero-order) correlate of mental arithmetic,
and captured the most unique arithmetic variance—that is,
over and above that captured by the other subconditions.
Note also that Lyons et al. (2014) showed a developmental
effect for the ordering task, wherein the unique arithmetic
variance it captured rose from nonsignificant in Grade 1
to highly significant in later grades. Figure 2 in this article
shows a similar pattern for the single-digit i1 subcondition,
suggesting that these trials may have been driving not
only the overall result but also the developmental change
as well.

Here again, one might be tempted to attribute the predic-
tive success of the i1 subcondition to the fact that these items
appear to strongly evoke notions of counting. However, the
contribution of the single-digit i1 subcondition remained
robust even after controlling for children’s counting abil-
ity. Indeed, the unique predictive capacity of the single-digit
i1 subcondition outstripped counting (Table 6), the other
ordering subconditions (Figure 2 and Tables 3 and 5), and all
of the other numerical and non-numerical tasks considered
here (Table 6; see also Lyons et al., 2014). In other words,
children’s proficiency at recognizing the relative order of
arguably the most basic and quintessentially “ordinal” sets
of numbers was both strongly and uniquely related to their
mental arithmetic scores. This is precisely what one would
expect under the assumption that ordinality is a fundamen-
tal property of number symbols that in turn forms a funda-
mental building block from which more sophisticated math
abilities are constructed.

Another potential counter to the notion that ordinality is a
fundamental component of number symbols is that children
may simply be more familiar with specific sets of numbers,
and our single-digit i1 trials just happen to comprise such
sets. Here, it is important to note that the not-in-order ver-
sions of these items include the same numbers (see Table
A1 in Appendix 1), so familiarity with the numbers them-
selves, or even specific sets of numbers could not explain
the unique arithmetic variance captured by the single-digit
i1 condition. Instead, a familiarity account would have to
limit itself to familiarity with that specific set of numbers
in that specific order. In other words, at this point, ordi-
nality is effectively an assumed component of the expla-
nation. Furthermore, the arithmetic problems of course do
not include just these triplets of numbers, so it is diffi-
cult to imagine the underlying mechanism that explains
the ordering–arithmetic relation based solely on familiar-
ity with the numbers themselves. To be clear, we find that
performance on ordered number sequences predicts per-
formance on arithmetic problems that do not necessarily
involve these numbers or sequences. Because this result can-
not be attributed to either familiarity or counting (as noted
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earlier), and given the several lines of argument already
discussed, we argue that the most straightforward explana-
tion is that the single-digit i1 trials tap an underlying princi-
ple of numerical processing—ordinal understanding of num-
ber symbols—that drives performance on both the ordering
and arithmetic tasks.

On a more applied note, it is worth highlighting the
fact that the single-digit i1 subcondition comprised only
five trials. That so much (unique) arithmetic variance can
be accounted for by just a handful of trials is certainly
remarkable. In particular, the ordering task described here
may prove useful in educational settings, for instance as an
easily administered and interpreted marker of children who
might be in need of further math assistance. On the other
hand, this study no doubt benefited from a large sample
with the resources to test each child in one-on-one sessions.
Hence, it remains to be seen whether the current results
generalize to situations with fewer individuals and perhaps
less well-controlled testing environments. In other words,
for practical purposes, the current results appear promising
for educators, but caution must be urged pending more
rigorous field testing.

An important open question at the moment is how exactly
ordinality is assessed during symbolic number process-
ing. One simple possibility is via sequential (i.e., left–right)
comparison of number pairs. On the other hand, Lyons
and Beilock (2013) indicated that, although this assump-
tion appears to be valid for nonsymbolic ordinal judgments,
this is not the case for symbolic ordinal judgments (the
latter being the focus of the current article). Moreover, if
this were the case, one would expect better overall perfor-
mance on not-in-order relative to in-order trials because
the majority of the former could be rejected after consid-
ering only the first pair (whilst one would have to com-
pare at least two pairs and apply an associative inference
rule on the in-order trials; see Table A1 in Appendix 1).
However, this was not the case: The main effects of Order
were nonsignificant, with performance on in-order trials
in fact slightly better than not-in-order trials (single digit:
p= .105, in-order μ= 2,933, not-in-order μ= 2,977; dou-
ble digits: p= .424, in-order μ= 3,110, not-in-order= 3,132;
recall that a lower number indicates better performance).
Consistent with Lyons and Beilock (2013), this suggests that
sequential, pairwise comparison was not the primary strat-
egy employed by the majority of children. Another possi-
bility is some form of verbal rehearsal. On the other hand,
we have already seen how counting is unrelated to order-
ing performance, and it is unclear how such an explana-
tion could account for the greater reversed distance effect in
double- relative to single-digit trials. Still other possibilities
include visuo-spatial processing (Knops & Willmes, 2014) or
other types of ordinal processing such as serial-order work-
ing memory (e.g., Abrahamse, van Dijck, Majerus, & Fias,

2014). The bottom line, at present however, is that we simply
do not know. That said, we believe the current results clearly
demonstrate that ordinality is key to understanding how
even elementary-age children process number symbols, and
we hope that this in turn will spur further critical research
into answering this question.

In conclusion, the current data strongly support the
notion that ordinality is a fundamental aspect of the
development of numerical processing. It is both key to
understanding how children represent numbers symbol-
ically and it appears to serve as a fundamental building
block upon which children’s arithmetic abilities are formed.
Although more hands-on, in-class testing is needed, these
results also may prove particularly useful for math edu-
cators in need of a rapid, reliable gauge of children’s basic
numerical proficiency.
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NOTES

1 Note that, strictly speaking, correcting for multiple com-
parisons is not necessary, given that the goal here was to
verify that reversed distance-effects obtain in all grades
(not just in one of six grades). Nevertheless, all ps< .009,
which is the corrected threshold for six comparisons
using the Dunn–Šidák (Šidák, 1967) method.

2 Corrected threshold: p= .010.
3 Note that a correlation takes into account the variability

as well as the raw slope of the relation between perfor-
mance and distance. In this formulation, a positive value
indicates a reversed distance effect, and a negative value
indicates a canonical distance effect.

4 This model had Arithmetic as the dependent vari-
able and 16 predictors: Grade (1–6), numeral ordering
(NumOrd), numeral comparison (NumComp), dot
comparison (DotComp), object matching (ObjMatch),
counting (Counting), dot-quantity estimation (DotEst),
number-line estimation (NumLine), nonverbal intel-
ligence (Ravens), reading scores (Reading), and age
(Age, centered on each grade); in addition to four inter-
action terms: Grade×NumOrd, Grade×ObjMatch,
Grade×Count, and Grade×NumLine (see Lyons et al.,
2014, for details on how this model was selected).

5 The next highest subcondition produced a unique
F-value of 32.54.
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APPENDIX 1

Table A1
ORDERING TASK ITEMS

Subcondition
Single-
digit Subcondition

Double-
digit

i1 2 3 4 i1 18 19 20
i1 4 5 6 i1 18 19 20
i1 4 5 6 i1 29 30 31
i1 6 7 8 i1 29 30 31
i1 6 7 8 i2 17 19 21
i2 1 3 5 i2 28 30 32
i2 1 3 5 i2 28 30 32
i2 3 5 7 i2 38 40 42
i2 3 5 7 i2 38 40 42
i2 5 7 9 i3 18 21 24
i3 2 5 8 i3 27 30 33
i3 2 5 8 i3 27 30 33
i3 3 6 9 i3 37 40 43
i3 3 6 9 i3 37 40 43
n1 4 3 2 n1 18 20 19
n1 4 2 3 n1 20 19 18
n1 6 4 5 n1 30 29 31
n1 6 5 4 n1 39 38 40
n1 8 7 6 n1 40 39 38
n2 5 3 1 n2 32 30 28
n2 5 3 7 n2 32 28 30
n2 7 5 9 n2 40 42 38
n2 9 7 5 n2 42 40 38
n3 5 8 2 n3 24 18 21
n3 6 3 9 n3 24 21 18
n3 7 1 4 n3 33 30 27
n3 7 4 1 n3 40 37 43
n3 8 5 2 n3 43 40 37

APPENDIX 2. ADDITIONAL TASK DESCRIPTIONS

Note that task descriptions are taken from Lyons et al.
(2014).

Numeral Comparison (NumComp). In the NumComp
task, children saw two numbers presented horizontally as
Arabic numerals, and their task was to decide which number
represented the larger quantity. Children saw 64 trials, 32 of
which were one digit and 32 of which were two digits. For
both sizes, ratios (R=min/max) fell into one of four ranges:
R≤ .5, R= .5, .5<R<.7, R≥ .7, with eight trials in each ratio
range at each size (one digit vs. two digits). Stimuli remained
on the screen until the child responded. Reliability on this
task was high: α= .977.

Dot Comparison (DotComp). In the DotComp task, chil-
dren saw two arrays of dots—one on either side of the
screen—and their task was to decide which array contained
more dots. The quantities and ratios used were the same
as those in the NumComp task. Stimuli remained on the
screen until the child responded. Note that strong relations
between performance on this task and various measures of

math ability have been reported previously when allowing
for self-paced responses (e.g., Piazza et al., 2010). Owing
to geometric constraints, all versions of a dot-comparison
task will allow for at least some non-numerical parameter
to covary with number, a problem compounded by the fact
that participants switch the parameters they rely upon from
trial-to-trial (Gebuis & Reynvoet, 2012). Recent work has
shown that performance on dot-comparison trials where
overall area and average individual dots size are incongru-
ent with number is more predictive of math achievement
than congruent trials (Gilmore et al., 2013). In the current
data set, overall area and average individual dot size were
always incongruent with number: the array with fewer dots
had greater overall area and larger average dot size (individ-
ual dot sizes varied randomly; note also that density/overall
contour was always congruent with number). In this way, our
stimuli were biased to find a positive result—that is, a signif-
icant relation between DotComp and Arithmetic. Reliability
on this task was high: α= .955.

Object Matching (ObjMatch). In the ObjMatch task, chil-
dren were shown a sample array of common objects (various
animals and pieces of fruit) and two test arrays of objects
below the sample array. The children’s task was to determine
if the left or right test array contained the same number of
objects as the sample array. Children saw 45 trials in total.
On 15 trials, all objects in all arrays were the same. On 15
trials, each of the three arrays contained different types of
objects, but the objects within a given array were all the same.
On 15 trials, all arrays contained a mixture of object types.
The number of objects in the arrays ranged from 1 to 6, and
the absolute numerical distance between the two test arrays
was 1 or 2. Stimuli remained on the screen until the child
responded. Reliability on this task was high: α= .956.

Counting (Counting). In the Counting task, children saw
between 1 and 9 dots and their task was to count the number
of dots on the screen as quickly and accurately as possible.
Children saw five trials for each quantity. Trials were scored
as correct only if the child’s response was exactly correct.
Verbal responses were collected by the experimenter in writ-
ten fashion. Response times were estimated by having the
child pressing a button as they gave their verbal response.
Reliability on this task was high: α= .946.

Numberline Estimation (NumLine). In the NumLine task,
children were shown a horizontal line marked as 0 on the
left end and 100 on the right end. On each trial, they were
shown an Arabic numeral (centrally presented above the
numberline) in the range 3–96 (the number was presented
verbally at the same time through a pair of headphones).
Children’s task was to click (with a computer mouse) on the
numberline where they thought the target number should be
placed in terms of the relative quantity it represented. Stimuli
remained on the screen until the child responded. Children
saw 26 total trials. Reliability on this task was high: α= .940.
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Dot-Quantity Estimation (DotEst). In the DotEst task,
children were shown a single array of dots presented too
quickly (750 ms) for the dots to be counted individually,
which was followed by a visual mask. The mask remained
on the screen until the child responded. Children’s task was
to estimate the number of dots in the array by giving a verbal
response. These responses were manually recorded by the
experimenter. Children completed a total of 84 trials (12 each
for quantities 1–4, 7, 11, and 16). Note that if only trials with
target values 4, 7, 11, and 16 were used, results were highly
similar. Reliability on this task was good: α= .824.

Nonverbal Intelligence (Ravens). The Ravens task com-
prised a battery of colored progressive matrices. This is a
normed, untimed, visuo-spatial reasoning test for children
(Raven, Court, & Raven, 1995). Children saw a colored pat-
tern and were asked to select the missing piece out of six
choices. Children completed 36 items; a child’s score was the

total number of correctly completed items. For the Dutch
version of this task, Van Bon (1986) reported reliabilities of
.80 or higher.

Reading Ability (Reading). The Reading task was part
of the normed Maastricht Dyslexia Differential Diagno-
sis battery (Blomert & Vaessen, 2009) and comprised
three subtasks. Subtasks contained high-frequency words,
low-frequency words, or pseudo-words. In each subtask,
participants saw a series of up to 5 screens (advanced by
the experimenter), each with up to 15 items (75 total items
per task). Children’s task was to read each item aloud as
quickly and accurately as possible. An experimenter manu-
ally marked the accuracy of each item. A child’s score on a
subtask was the total number of correctly read items in 30 s.
Scores on the three subtasks were summed to form a child’s
final Reading score. Reported test–retest reliability for this
task is high (.95; Blomert & Vaessen, 2009).
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