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Abstract

This article reviews several canonical signatures of number processing and the proposed theoretical interpretations of these
signatures. It examines the biological origins of number sense in humans and nonhuman species alike, how to conceptualize
the notion of numbers without symbolic form, and the role that number sense may play in human development. Symbolic
numbers are discussed in terms of their history and the leading ideas about how the human brain assigns meaning to these
crucial building blocks of modern human society.

Introduction

It is difficult to think of an aspect of modern society that has
not been fundamentally shaped by the application of mathe-
matics. Numbers, it may be argued, provide the basic cognitive
scaffolding around which mathematical thinking is eventually
constructed. The study of how numbers are represented and
manipulated at both cognitive and neural levels thus provides
a window into how the brain acquires and hones perhaps one
of its most effective tools for shaping the world around us:
mathematics. At the broadest level, the study of numerical
cognition has divided numbers into two categories: symbolic
and nonsymbolic. Symbolic numbers typically refer to exact
quantities and are typically studied in written (e.g., Indo-
Arabic numerals) or spoken (number words) form. Nonsym-
bolic magnitudes tend to be more approximate in nature – for
instance, one may rapidly estimate which of two groups of
dots contains more objects without counting or explicit
reference to a symbolic numerical label. Number processing in
both forms – symbolic and nonsymbolic – has been exten-
sively studied in human children and adults, as well as many
different nonhuman species. Methodological approaches tend
to be behavioral (e.g., response times and/or error rates in
numerical judgments) or neural (e.g., noninvasive neuro-
imaging in humans, as well as single-cell recording in
nonhuman primates).

In the sections that follow, I review several canonical
signatures of number processing and the proposed theoretical
interpretations of these signatures. I then examine the biolog-
ical origins of number sense in humans and nonhuman species
alike, how to conceptualize the notion of numbers without
symbolic form, and the role that number sense may play in
human development. Finally, I discuss symbolic numbers in
terms of their history and the leading ideas about how the
human brain assigns meaning to these crucial building blocks
of modern human society.

Signatures of Number Processing

There are several behavioral and neural signatures of number
processing commonly found and discussed throughout the
field of numerical cognition. Interpreting these effects has
helped shape the ongoing debate about how numbers are
represented and processed in the brain.

Numerical Distance Effect

Perhaps the most commonly cited numerical signature is the
numerical distance effect. Note that the term ‘distance’ is
something of a misnomer here, as it refers strictly to the
absolute numerical difference between numbers, and not the
physical distance between them. When an individual is asked
to decide which of two numbers is numerically greater
(commonly referred to as a numerical comparison task),
performance depends systematically on the numerical differ-
ence between the two numbers. Performance tends to be worse
(longer response times and higher error rates) when the
numbers being compared are numerically close (e.g., perfor-
mance on 5 vs 6 is worse than on 3 vs 8). This effect has been
shown in both adults (Moyer and Landauer, 1967; Buckley
and Gillman, 1974) and children (Sekuler and Mierkiewicz,
1977; Rubinsten et al., 2002). Moreover, neuroimaging
studies have shown that brain responses – particularly in the
intraparietal sulcus (IPS) – are modulated specifically by
numerical distance during numerical comparison tasks (Pinel
et al., 2001; Kaufmann et al., 2005; Ansari et al., 2006;
Mussolin et al., 2013).

A related effect uses priming instead of comparison as
a means of measuring the influence of numerical distance on
brain and behavioral responses. In a priming paradigm,
participants see a very brief stimulus (called a prime) imme-
diately prior to completing some simple task. For example,
when asked to name a number, numerically close primes lead
to more facilitation (faster response times) than do numerically
distant primes (Reynvoet et al., 2002). This effect is found in
children as young as first grade, and is similar to that seen in
adults (Reynvoet et al., 2009). The numerical distance between
prime and target numbers also modulates neural responses in
parietal cortex (Notebaert et al., 2010). In sum, numerical
distance effects are present in both adults and children, influ-
ence both behavioral and neural responses, and are detectable
whether measured via comparison or priming.

Numerical Ratio Effect

Another numerical signature is the numerical ratio effect, which
refers to the ratio between two numbers,

�n1
n2

�
, typically where

n1< n2. (Notice that the ratio effect differs from the distance
effect primarily in that the former takes into account the
numerical size of the numbers in question. For example the
distances between the pairs (2, 3) and (8, 9) are both 1;
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however, they differ in ratio
�
2
3s

8
9

�
.) In number comparison

tasks (subjects decide which of the two numbers is numerically
greater), performance tends to be worse as ratio approaches 1
(e.g., Lyons and Beilock, 2009). Six-month-old infants’ looking
times are influenced by numerical ratio. For example, if an
infant sees 16 items repeatedly displayed on a screen, the infant
will look longer at the screen when it changes to 32 items
(ratio¼ 0.5). However, the child will not increase its looking
time when the screen changes from 16 to 24 items
(ratio¼ 0.67) (Xu et al., 2005). The ratio at which children can
distinguish between such perceptual magnitudes becomes
more precise (i.e., closer to 1) as children get older (Halberda
and Feigenson, 2008), asymptoting at around 10

11 in adults
(Halberda and Feigenson, 2008; Pica et al., 2004).

The method most commonly used for assessing neural
responses as a function of numerical ratio is called adaptation.
An individual whose brain is being imaged will passively view
several repetitions of a given number (e.g., 6). This passive
repetition is associated with a steady reduction in the neural
response to the repeated (standard) number; that is, the rele-
vant brain regions are thus ‘adapted’ (i.e., habituated) to the
repeated stimulus (Grill-Spector et al., 2006). Researchers will
then intermittently present different (deviant) numbers (e.g.,
one of 4, 5, 7, 8, etc.) and measure the resulting neural
response. One can then plot the brain responses to the deviant
numbers as a function of their numerical ratio relative to the
standard number. Neural responses in the parietal lobe (espe-
cially the IPS) tend to be systematically greater as the ratio
between the standard and the deviant diverges from 1 (Piazza
et al., 2004; Holloway et al., 2013).

A close derivative of numerical ratio is sometimes referred
to as the numerical Weber fraction, or w, which has become an
especially popular measure of numerical comparison perfor-
mance (e.g., Halberda et al., 2008, 2012). One reason for this
is that w is an especially strong predictor of how accurately
individuals compare perceptual magnitudes (such as arrays of
dots). When fitting sample means, the R2

fit between esti-
mated w and actual error rates is often upward of 0.9 for
children, monkeys, and adults (Pica et al., 2004; Cantlon and
Brannon, 2007; Halberda and Feigenson, 2008; Lyons and
Beilock, 2011).

A few points of caution with respect to w are worth noting,
however. First, w is very closely related to numerical ratio. This
is because the formula for estimating w when comparing two
numbers n1 and n2 (n1< n2) relies on the value k ¼ n2�n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðn22þn21Þ
p ,

which is very highly correlated with the simple ratio between
n1 and n2

�n1
n2

�
(for full details on the formula for estimating w,

see Pica et al., 2004). For example, in a stimulus set containing
all possible (nonequal) number pairs from the range 1–10, k
and n1

n2
will be correlated at r¼�0.999. Thus, an estimate of w

should be nearly identical to a ratio effect. Second, w can only
be assessed with respect to error rates and not response times.
This may be especially problematic when examining symbolic
number comparisons (i.e., using Indo-Arabic numerals) in
adults, where error rates may be very close to zero, and
hence the majority of meaningful performance variability is
often found in response times. Finally, Inglis and Gilmore
(2014) recently showed that test/retest reliability for both w
and ratio effects is poor (though see also Price et al., 2012;

for issues regarding reliability of symbolic distance effects,
see Maloney et al., 2010). On the other hand, Inglis and
Gilmore (2014) showed that reliability for overall average
accuracy was quite high; hence, if one is concerned with
individual differences (e.g., relating numerical performance
with other measures, such as math achievement or IQ), then
one may be better off forgoing measures related to
numerical distance or ratio altogether.

In sum, like numerical distance, the influence of numerical
ratio on both brain and behavioral responses has been iden-
tified across a wide range of ages, measures, and experimental
paradigms. There has been strong recent interest in using w –

a close cousin of numerical ratio. While w yields strong fit
with performance in limited cases (e.g., error rates when
comparing perceptual magnitudes), the usefulness of w is
quickly exhausted – for instance, when considering
individual differences or cases in which high accuracy rates
are expected.

Interpretations

The most common interpretation given to both numerical
distance and ratio effects (including w) is that of representa-
tional precision. In this view, distance/ratio effects arise
because the representations of numerically close numbers are
more likely to overlap than are those of numerically distant
numbers (Dehaene and Changeux, 1993; Verguts and Fias,
2004; Nieder and Dehaene, 2009). Greater representational
overlap makes it more difficult to distinguish between two
numbers; for instance, when deciding which of the two
numbers is numerically greater in a comparison task, or
detecting numerical change in an adaptation or looking-time
paradigm. This account explains the distance effect because
the representations of 5 and 6 overlap to a greater degree
than do those of 3 and 8. The ratio effect is accounted for
by the assumption that the representations of larger
numbers overlap to a greater degree than do smaller
numbers; hence, while 8 and 9 overlap to a greater extent
than do 7 and 9 (distance effect), 8 and 9 also overlap to
a greater extent than do 2 and 3 (ratio effect).

Empirical justification for these assumptions has arisen
primarily from work with perceptual magnitudes (e.g., esti-
mating – without explicitly counting – the number of dots in
an array, or which of the two arrays of dots contains more
dots; Indow and Ida, 1977). Nieder and colleagues (for
a review, see Nieder, 2005) recorded single-cell activity from
individual prefrontal and parietal neurons in macaque
monkeys while monkeys briefly held a quantity of dots in
active memory. The authors found that some of the neurons
thus sampled were tuned to specific quantities of dots. For
instance, a given neuron might be most active (measured in
terms of action-potential spike density) when the monkey
temporarily held in memory three dots. Interestingly, the
neuron would also fire when the monkey held in mind two
or four dots; however, the net amount of activity was less
than for the preferred quantity (three, in this example), and
activity was still less for one or five dots. In this way, Nieder
and colleagues showed that there are numerically tuned
neurons in the brain, and that these representations are
systematically imprecise (i.e., analog). Neuronal responses
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to different numbers overlap with one another (implying
a degree of representational imprecision), and this overlap
varies systematically as a function of the numerical distance
between them (see Figure 1 for a simulated example based
on human data in Merten and Nieder, 2009). Furthermore,
both the neuronal evidence discussed above as well as
behavioral evidence in humans (e.g., Nieder and Merten,
2007; Merten and Nieder, 2009) show that numerosity and
tuning width are positively correlated. Specifically, as the
preferred number increases, the width (i.e., systematic
imprecision) of that preference also increases (note that this
width is in fact constant on a log–log plot). This means that
8 and 9 will overlap more than 2 and 3, which, as discussed

above, is consistent with the numerical ratio effect. Finally,
neuroimaging evidence in humans also shows ratio-
dependent tuning in parietal cortex – at least for
nonsymbolic magnitudes (Piazza et al., 2004).

To briefly summarize, neural evidence is consistent with
the interpretation that numerical ratio and distance effects are
indicative of an underlying analog magnitude representation:
numerically closer numbers show greater representational
overlap (distance effect), and this overlap increases as the size
of the numbers in question increase (ratio effect). However,
the vast majority of this evidence comes from experiments that
examined approximate, nonverbal, nonsymbolic, perceptual
magnitudes (e.g., dot arrays; hereafter, simply ‘nonsymbolic
magnitudes’). When we look at symbolic numbers, such as
Indo-Arabic numerals, the evidence is not as clear.

For symbolic numbers such as Indo-Arabic numerals,
Verguts et al. (2005) proposed an alternative explanation,
beginning with the observation that smaller numbers occur
with far greater frequency than do larger numbers (both in
speech and in written records; Dehaene and Mehler, 1992).
Verguts et al. (2005) created a distributed model of number
representation with constant representational precision
(equally wide tuning curves) for all numbers, but matched
number frequency during model training roughly to that
reported by Dehaene and Mehler (1992). When performing
a standard number comparison task, the model simulated
a ratio effect. In other words, to explain the ratio effect, at
least for symbolic numbers, one need not assume
representational overlap that increases with the number
being represented (see also Verguts and Van Opstal, 2005,
for empirical verification of this model).

Sasanguie et al. (2011) have since shown that comparison
and priming numerical distance effects are uncorrelated.
These results essentially force one to choose between
comparison and priming distance effects as the ‘true’ indicator
of representational overlap, with the other indexing some
other aspect of processing. To this end, Van Opstal et al.
(2008) dissociated the notion of a comparison distance
effect entirely from the notion of representational overlap.
They did so by showing that comparison distance effects
obtain for both number and letter comparisons (when asked
‘which letter comes later in the alphabet,’ participants were
slower to compare, e.g., E vs F than C vs H), but the priming
distance effect was found only for numbers. Hence, Van
Opstal et al. argued that the priming distance effect is the
superior index of number representation, and that the
comparison distance effect is primarily due to more domain-
general mechanisms, such as response mapping.

Another puzzling aspect of symbolic distance effects
occurs when participants are asked to judge relative numerical
order. Under such task demands, the effect of numerical
distance is in fact reversed on trials where the numbers are in
the correct order. For example, participants are faster and
more accurate when confirming that 4 – 5 – 6 is in order than
when confirming that 3 – 5 – 7 is in order (Turconi et al.,
2006; Franklin, 2009; Franklin and Jonides, 2009; Lyons
and Beilock, 2013). Crucially, no such reversal of the
distance effect is found when participants judge the relative
order of nonsymbolic perceptual magnitudes (arrays of
dots; Lyons and Beilock, 2013). One interpretation is that

Figure 1 (a) Shows simulated tuning curves based on monkey
neuronal data (for a review, see Nieder, 2005) and human and monkey
behavioral data (Merten and Nieder, 2009). The x-axis is the number of
dots in the stimulus, and the y-axis is the simulated firing rate. Each
curve shows the simulated firing rate for a neuron that is tuned to the
number over which it is centered (dashed lines are provided to help
identify the curves for 2, 3, 8, and 9). That is, the relative firing rate for
a neuron tuned to 9 fires maximally for 9 dots. Notice that this simu-
lated ‘9-neuron’ also fires for 8 dots, but a bit less so than for 9; indeed
the firing rate falls off as the presented number of dots (x-axis) increas-
ingly differs from 9. Finally, notice that these curves fall off more
steeply for neurons tuned to smaller numbers. It is in this way that the
width of tuning curves is positively correlated with the number being
represented. (b) Plots the degree to which each pair of curves overlap
with one another: n1Xn2

n1Wn2
. Overlap proportions for 2 and 3 and 8 and 9

are marked with a dot, which demonstrates the ratio effect.
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highly familiar associations between symbolic numbers (e.g.,
from the counting sequence) in essence trump the standard
influence of numerical distance. Regardless of one’s
interpretation, the reversed ordinal distance effect
demonstrates that simply changing task demands can
qualitatively alter the influence of numerical distance on
performance, which further calls into question the
assumption that symbolic numerical distance effects are
a straightforward index of symbolic number representation.

In sum, a common interpretation of numerical ratio and
distance effects is that they index underlying representational
overlap. In the case of nonsymbolic magnitudes (such as dot
arrays), empirical evidence strongly supports this interpreta-
tion. However, with respect to symbolic number representa-
tion, several lines of evidence converge to render this
assumption questionable at best.

Biological Origins – Number Sense

As noted above, adult and infant humans are capable of
determining which of the two arrays of objects (e.g., dots)
contains more items, even without counting (Buckley and
Gillman, 1974). Adults’ ability to do so depends on the
ratio between the relative numbers of items in each of the two
arrays – with a typical limit of about 10

11 (Cantlon and
Brannon, 2007). This pattern of results is robust across
cultures and obtains even in individuals whom possess no
words for numbers beyond three or four, or other kinds of
formal mathematics (Pica et al., 2004). Individuals both
with and without formal math education are capable of
adding and subtracting such approximate magnitudes as
well (Pica et al., 2004; Barth et al., 2006). The ability to
process nonsymbolic magnitudes is commonly referred to
as ‘number sense’ (Dehaene, 1997).

Number Sense across Species

When estimating changes in nonsymbolic magnitude,
humans and (rhesus macaque) monkeys show a similar
pattern of behavior (Merten and Nieder, 2009). A common
experimental paradigm used to train and record neural and
behavioral responses in monkeys is often referred to as
‘delayed match-to-sample,’ and it is similar to dot comparison
tasks described previously. The difference is that arrays are
presented sequentially. An individual sees a single array of
dots, which is followed shortly thereafter by a second array.
One’s task is to determine if the second array matches the first
in terms of the number of dots. The benefit of this approach is
that one can more transparently record (and hence model) the
performance function (‘tuning curve’) for a specific number –
i.e., the first number presented and held in mind during the
delay period. (In a standard number comparison task where
both numbers are presented simultaneously, it is unclear
whether performance and/or neural activity reflects the
representation of one number, both numbers, the
comparison process, or some combination of all three.) For
a specific quantity of dots (e.g., 30), one can plot the
probability of a ‘same’ judgment as a function of the
quantity of dots in the second array. Even for quantities as

high as 30, both monkeys and adult humans reliably report
‘same’ most often when indeed the second array contained
30 dots. This demonstrates that both species are capable of
processing nonsymbolic magnitudes. Moreover, as the
number of dots in the second array shifts away from 30, the
probability of a ‘same’ response decreases systematically as
a function of the numerical ratio of the two arrays. In other
words, the closer the ratio between the two arrays is to 1,
the more likely an individual is to perceive the two arrays as
in fact containing the same number of items (thus
demonstrating, in both species, the ratio effect, as discussed
previously). Interestingly, the function that best describes
the decrease in the probability of a ‘same’ response
corresponds to a positively skewed distribution whose
overall width increases as the target quantity (the first array)
increases (somewhat akin to the curves plotted in Figure 1).
That is, one can imagine a quasi-normal distribution
centered on the target quantity, with a stretched out tail to
the right, and a relatively compact tail to the left.
Furthermore, the distribution (in both directions) centered
on 30 will be wider than that for 25, and that for 25 will be
wider for 20, and so on. Interestingly, the function that
describes this tuning is quite similar in both humans and
monkeys, which suggests a potential common mechanism
across species, at least for detecting change in nonsymbolic
magnitudes. (Plotted on a linear scale, the distribution
widens at a rate of about 0.421 units per unit increase in the
target number. On a log-scale, distribution widths are both
symmetrical and constant with target number change
(Merten and Nieder, 2009).)

The similarity between human and monkey processing of
nonsymbolic magnitudes extends to other nonsymbolic magni-
tudes tasks, such as simultaneous nonsymbolic comparison
(Brannon and Terrace, 2002), nonsymbolic ordering (Cantlon
and Brannon, 2006), and nonsymbolic arithmetic (Cantlon
and Brannon, 2007). Indeed, this ability is common to many
species, including dolphins, macaques, capuchins, baboons,
wolves, canids, mice, parrots, crows, robins, bees, fish, and even
beetles (Agrillo et al., 2009; Armstrong et al., 2012; Baker et al.,
2012; Barnard et al., 2013; Beran et al., 2012; Carazo et al.,
2012; Nieder, 2005; Pepperberg, 2013; Piffer et al., 2013;
Smirnova et al., 2000; Utrata et al., 2012; Yaman et al., 2012 – for
reviews, see Agrillo and Beran, 2013; Pahl et al., 2013). In sum,
it is clear that the ability to process nonsymbolic magnitudes is
not unique to humans, and it is surmised that our ability to do
so is part of an innate capacity with deep evolutionary roots
(Hubbard et al., 2008).

Number Sense in Early Development

The ability to distinguish visual (Xu and Spelke, 2000) and
auditory (Lipton and Spelke, 2003) nonsymbolic magnitudes
is present in children as young as 6 months of age. The
topography of neural signatures can distinguish between
neural pathways related to object identification and
nonsymbolic magnitudes; further, this topography is similar
in adults, 4-year-olds, and 3-month-old infants, with sensi-
tivity to magnitude centered on the IPS (Cantlon et al., 2006;
Izard et al., 2008). Combined with the observation that
something akin to a number sense is present across a range of
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species, the results from human developmental studies
suggest that the basis of humans’ ability to process nonsym-
bolic magnitudes is present from a very early developmental
stage, does not require formal math training, and may even be
innate (Feigenson et al., 2004; Cordes and Brannon, 2008;
Nieder and Dehaene, 2009).

This insight has led various researchers to hypothesize that
children’s number sense forms the foundation on which more
sophisticated, culturally acquired mathematical skills rest
(e.g., Dehaene, 1997). Indeed, over a dozen papers in the last
several years have demonstrated a correlation between indi-
vidual differences in adults’, children’s, and even infants’
ability to process nonsymbolic magnitudes with performance
on a wide range of formal math achievement tests (Bonny and
Lourenco, 2013; Desoete et al., 2012; Gilmore et al., 2010;
Halberda et al., 2008, 2012; Libertus et al., 2011, 2012,
2013; Lonnemanna et al., 2011; Lourenco et al., 2012;
Lyons and Beilock, 2011; Mazzocco et al., 2011a,b; Piazza
et al., 2010; Starr et al., 2013; for a review, see Feigenson
et al., 2013). Training on approximate arithmetic (using dot
arrays) has also been shown to preferentially improve
symbolic math achievement scores (Park and Brannon, 2013,
2014; Hyde et al., 2014). These results point to the exciting
prospect that numerical cognition may be a prime example of
how evolutionarily ancient neural systems are co-opted by
cultural inputs (number symbols) to serve a cognitive
ability (mathematics) that is crucial to much of modern
human life (Dehaene and Cohen, 2007).

On the other hand, it remains unclear precisely how this
process occurs. With respect to training, other studies have
shown that training on dot comparison tasks does not improve
symbolic math scores (Wilson et al., 2006; Dewind and
Brannon, 2012; Park and Brannon, 2014); thus, it is not
so much improved processing of nonsymbolic magnitudes per
se, but improved manipulation of those magnitudes in
a mathematical context (arithmetic) that improves symbolic
math performance (Park and Brannon, 2014). With respect to
individual differences, the relation between nonsymbolic
magnitude processing and math achievement has not replicated
consistently (De Smedt et al., 2013), and a recent meta-analysis
has shown that the relation between nonsymbolic magnitude
processing and math achievement is relatively small (r¼ 0.20
for cross-sectional, and r¼ 0.17 for longitudinal studies; Chen
and Li, 2014). Moreover, multiple studies have now shown
that this correlation is often entirely eliminated once one
controls for basic symbolic number processing abilities (such
as number comparison, counting, or number ordering; Bartelet
et al., 2014; Castronovo and Göbel, 2012; Fuhs and McNeil,
2013; Göbel et al., 2014; Holloway and Ansari, 2009;
Kolkman et al., 2013; Lyons and Beilock, 2011, 2014;
Sasanguie et al., 2013; Toll and Van Luit, 2014). In other
words, the processing of number symbols appears to be
more directly tied to more complex math processing (even
after controlling for the fact that both are typically in the
same visual format; e.g., Lyons and Beilock, 2011; Lyons et al.,
2014).

The critical outstanding question, then, may be to under-
stand precisely how nonsymbolic magnitudes aid young
children as they first begin learning to comprehend
and manipulate numerical symbols in mathematically

meaningful ways. However, even in kindergarteners and
preschoolers, the current literature remains mixed. For
instance, contrast results confirming a relation between
nonsymbolic and symbolic number processing in kinder-
garten or younger (Bonny and Lourenco, 2013; Jordan et al.,
2009; Gilmore et al., 2010; Libertus et al., 2013; Mazzocco
et al., 2011b; Starr et al., 2013) with results from studies
showing largely the opposite (Bartelet et al., 2014; Fuhs and
McNeil, 2013; Kolkman et al., 2013; Sasanguie et al., 2014;
Toll and Van Luit, 2014). Indeed, there is even evidence to
suggest that developmental influence runs in the opposite
direction – that improvement in symbolic number abilities
predict later accuracy in nonsymbolic magnitude
comparison (Mussolin et al., 2014; see also Gelman and
Gallistel, 2004). It may be that taking a broader view of
how the key neural systems of young children change as
a function of math education and math learning can
provide crucial insight into this debate.

Number or Magnitude?

At this point, the reader may have noticed that I have used the
term ‘magnitude’ when discussing the capacity to process
approximate, nonverbal, perceptual, and nonsymbolic
numbers or quantities. In recent years, the phrase ‘approxi-
mate number system’ (ANS) has appeared as an appellation
for one’s capacity to perform many of the nonsymbolic tasks
described above (e.g., Halberda et al., 2006; Butterworth,
2010; Cantlon et al., 2009; McCrink and Spelke, 2010;
Piazza, 2010). References to the ANS have become common
in the literature; however, this has not occurred without some
controversy. First, the scope of the term is not entirely clear, as
it has been used refer to a range of tasks which are perhaps less
consistently related to one another than might be expected if
all relied upon a singular and unitary underlying construct
(Gilmore et al., 2011; Inglis and Gilmore, 2014; though see
also Price et al., 2012). Second, there remains some question
as to whether what is being measured by these nonsymbolic
tasks is indeed numerical.

This latter point of controversy is driven less by conflicting
results than by a fundamental measurement limit: it is
geometrically impossible to make all nonnumerical parame-
ters strictly uncorrelated with number in a single trial. Take,
for example, a nonsymbolic comparison task. On a given trial,
one will see two dot arrays, usually arranged side-by-side. The
task is to determine which array contains more items. Here,
‘number’ is conceptualized as the sum of the discrete items
in a given array, and this is contrasted with continuous
visual properties of the stimulus, such as individual dot size
(area), the total area of all dots in a given array, the local
spacing (Euclidean distance) between individual dots,
global spacing (e.g., the average pairwise distance between
all pairs of dots in the array – a property closely related to
density), the outer contour length of the array (a
semisubjective tracing of the outer envelope of the array),
and so on. In contrast to a discrete conception of number,
these properties vary continuously (akin to how the amount
of water in a glass varies continuously, at least to the
unaided human eye), and hence are typically labeled as
‘magnitudes’ as opposed to numbers. Notice that most of
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these properties will tend to be correlated (or sometimes
anticorrelated) with the relative number of dots in each
array; that is, these continuous properties provide
information about relative number. Hence, decisions may
be made not on the basis of the number of items in each
array, but may instead be driven entirely or in part by one
or more of these covariate, continuous parameters. For
instance, if the size of the individual dots is held constant,
the array with a greater total area must contain more dots; if
total area is equated across arrays, then the array with
smaller dots on average must contain more dots. Analogous
trade-offs present themselves for the other continuous
properties as well. In sum, the very rules of geometry
preclude the construction of a pair of arrays that differ in
number of items and are exactly equal on all conceivable
continuous (nonnumerical) parameters. The question, then,
is, if we have no way to measure number independently of
these other confounding variables, then can we ever be
certain that what we are calling ‘approximate number’ is
numerical at all? Might it be more appropriate to refer to an
‘approximate magnitude system’? Indeed, one may question
the logical soundness of an ‘approximate number’ to begin
with, in that one may simply be confusing a property of
a set (the number of items in the set) with the set’s capacity
for change (i.e., the possibility for the set to contain
different numbers of objects with different probabilities).
Indeed, this distinction is crucial for understanding and
maintaining the difference between a number (even
a number expressed as a ratio or proportion) and
a probability. To be sure, debate is heated (e.g., Cordes and
Brannon, 2009; De Hevia, 2011; Gebuis and Reynvoet,
2012a,b,c; Leibovich and Henik, 2013, 2014; Nys and
Content, 2012); however, as has happened elsewhere when
scientists have run up against what appears to be
a fundamental limit on humans’ capacity to measure
a given phenomenon, one’s ultimate conclusion may well
be more a matter of philosophy (Heisenberg, 1979).

In sum, then, whether one chooses to refer to an ‘ANS,’ an
‘approximate magnitude system,’ ‘number sense,’ or simply
‘nonsymbolic magnitude processing’ may, at least at present,
be largely a matter of opinion. Given the ongoing controversy,
for present purposes, I have chosen what seems to me the
most neutral term – nonsymbolic magnitude processing.
However, the reader is encouraged to recognize these other
terms in the literature, and, hopefully, consider the
theoretical assumptions behind each.

Subitizing

As noted in the previous section, there is a certain conceptual
difficulty (and perhaps methodological indeterminacy) with
the notion of ‘approximate number.’ If one’s requirement for
nonsymbolic ‘number’ is that the numerical representation be
exact, then one possible candidate is subitizing. Subitizing
refers to the rapid, exact apprehension of the number of
objects in a set without explicit counting (Mandler and Shebo,
1982; Dehaene and Cohen, 1994; Trick and Pylyshyn, 1994).
Subitizing is subject to a limit of about four items that appear
to be tied to a general processing capacity limit for visual
short-term memory (Luck and Vogel, 1997; Piazza et al.,

2011). When enumerating the exact number of objects in
a set, when there are four or fewer, performance varies very
little for sets with one versus four objects (both in terms of
errors and response times; e.g., Trick and Pylyshyn; Revkin
et al., 2008; Vuokko et al., 2013; Watson et al., 2007). This
stands in contrast to enumerating larger sets of objects. One
either begins to introduce increasingly large errors as the
number of items increases (in the case of estimation; e.g.,
Revkin et al., 2008; Izard and Dehaene, 2008), or response
times systematically increase as one counts the additional
items (e.g., Trick and Pylyshyn, 1994; Vuokko et al., 2013).
Furthermore, counting appears to rely disproportionately
more on working memory resources than does subitizing
(Shimomura and Kumada, 2011; Tuholski et al., 2001).
Neuroimaging evidence also supports the notion that
processing nonsymbolic sets >4 relies on qualitatively
different neural systems than does processing subitizable set
�4 (Ansari et al., 2007; Ester et al., 2012; Sathian et al.,
1999; Vetter et al., 2011; Vuokko et al., 2013). There is also
evidence to suggest there are two separate systems for
processing small (�4) and large (>4) numbers of items
even in infants (Xu and Spelke, 2000). Taken together, there
is evidence to suggest that subitizing operates in
a qualitatively different manner than processing of larger
nonsymbolic magnitudes. One important upshot (to which
I will return in the next Section Symbolic Numbers) is that
representation of exact number appears to be possible in the
case of subitizing, even in young children (Le Corre and
Carey, 2007).

Symbolic Numbers

Symbolic numbers are a relatively recent cultural invention
when viewed from the broader context of human evolution.
There is some evidence to suggest that tally sticks were used to
record quantities perhaps as early as 40 000 years ago (Ifrah,
2000). However, evidence for more sophisticated systems for
representing and manipulating abstract numerical symbols is
absent from the archaeological record until the rise of Meso-
potamian civilization around 3100 BC, which was followed
shortly thereafter by the emergence of symbolic number
systems in ancient Egypt and China only a few centuries later
(Ifrah, 2000). Archaeological evidence for the use of spoken
number words – another kind of number symbol – is more
difficult to come by, though one may infer their use, for
example, from root languages such as Proto-Indo-European
(PIE). Many languages that have descended from PIE share
similar forms for number words up to about 10 (Menninger,
1969/1992). As PIE is believed to have been originally
spoken c.4200 BC (Blench and Spriggs, 1997), one may infer
the use of similar number words perhaps as early as roughly
6000 years ago. On the other hand, present-day indigenous
cultures without substantial contact with modern developed
cultures have number words up to only three or four, and
they lack more sophisticated means of computing exact
quantities that exceed this limited range (Pica et al., 2004).
In sum, while the ability to process nonsymbolic
magnitudes appears to stem from a deep evolutionary
history, the ability to manipulate exact numbers in symbolic
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form is a much more recent cultural invention (see also
Damerow, 2001). This places the acquisition and mastery of
even basic processing of symbolic numbers (such as
memorization and linking of simple arithmetic facts) at
a fascinating junction between evolution and culture
(Dehaene and Cohen, 2007; Ansari, 2008).

Symbol Grounding

A central question for research on symbolic numbers concerns
what exactly number symbols represent – what do they refer?
(Harnad, 1990). An early proposal is that they refer to the
corresponding nonsymbolic magnitude: “When we learn
number symbols, we simply attach their arbitrary shapes to
the relevant nonsymbolic quantity representations”
(Dehaene, 2008: p. 552; see also, Dehaene, 1997; Gallistel
and Gelman, 2000). The appeal of this explanation is clear:
the meaning of a symbolic number is grounded in what
appears to be its evolutionary precursor in the (possibly
innate) representation of the corresponding nonsymbolic
magnitude, and support for this view has been echoed many
times over (e.g., Verguts and Fias, 2004; Feigenson et al.,
2004, 2013; Piazza et al., 2007; Hubbard et al., 2008;
Libertus and Brannon, 2009; Nieder and Dehaene, 2009;
Lyons and Ansari, 2009; Eger et al., 2009). More specifically,
the argument is that symbolic numbers provide a more
precise mapping (narrower tuning curve) onto the
corresponding nonsymbolic magnitude (for
a computational instantiation of this view, see Verguts and
Fias, 2004).

Three different lines of evidence are often cited to support
the proposal that symbolic numbers’meaning is derived from
direct reference to their corresponding nonsymbolic magni-
tude. First, numerical signatures such as the distance and ratio
effect show qualitatively similar patterns for symbolic
numbers and nonsymbolic magnitudes (e.g., Buckley and
Gillman, 1974; Dehaene, 2008). Second, neuroimaging
evidence often points to similar neural substrates –

specifically, the IPS – for symbolic and nonsymbolic
number processing (Fias et al., 2003; Diester and Nieder,
2007; Piazza et al., 2007; Eger et al., 2009). Third,
individual differences in nonsymbolic magnitude processing
are related to more complex symbolic math abilities (as
reviewed in the previous Section Number Sense in Early
Development). In sum, one candidate for the meaning of
a symbolic numbers – i.e., a potential solution to the
symbol grounding problem – is that a given symbol simply
refers to one’s internal representation of the corresponding
nonsymbolic magnitude.

Recently, several counterarguments to this proposal have
arisen. First, one may note that distance effects are observed in
virtually any discrimination task, whether one is dis-
tinguishing between items on the basis of perceptual dimen-
sions (e.g., odor discrimination in drosophila; Parnas et al.,
2013) or more abstract, categorical variables (e.g., dis-
tinguishing between species of animal figures; Gilbert et al.,
2008). As discussed previously when interpreting distance
and ratio effects, it is difficult to see how these effects in
symbolic numbers are indicative of underlying representa-
tions in the same way as nonsymbolic magnitudes. Hence, it

may be just as problematic to argue that qualitatively similar
numerical distance/ratio effects are evidence of common
representation across symbolic numbers and nonsymbolic
magnitudes as it would be to argue that odors in drosophila
and abstract animal categories in humans are underlain by
a common representation.

Second, with respect to neural overlap of symbolic and
nonsymbolic number processing, inferring a common neural
mechanism from coactivation of brain regions (called reverse
inference), though common, is logically problematic
(Poldrack, 2006). Recent evidence suggests that such overlap
in the case of numbers is dependent upon task demands in any
case: neural activity for symbolic and nonsymbolic numerical
ordering tasks shows a qualitatively different pattern of over-
lap relative to that for symbolic and nonsymbolic numerical
comparison tasks (Lyons and Beilock, 2013). Further, of the
three papers (Eger et al., 2009; Damarla and Just, 2013; Bulthé
et al., 2014) that assessed whether distributed patterns of
activity during processing of numbers in one format (e.g.,
symbolic) can be used to decode processing of numbers in the
opposite format (e.g., nonsymbolic), only one (Eger et al.,
2009) found evidence of successful cross-format decoding
(and even in that case decoding was unidirectional and only
slightly above chance: 57% accuracy, where chance was
50%). Cross-format fMRI adaptation has also yielded mixed
results, with the responses to format change substantially
larger than the responses to number change (Cohen Kadosh
et al., 2011; though see also Piazza et al., 2007). In sum,
while it is certainly possible that neural overlap of symbolic
numbers and nonsymbolic magnitudes is more than
a coincidence (Dehaene and Cohen, 2007), closer inspection
suggests that there is substantial neural dissociation between
the two formats. Behavioral evidence is consistent with this
view: when asked to directly compare a symbolic number
with a nonsymbolic magnitude (in an otherwise standard
number comparison task), the cost of switching between
formats is closer to what one would expect if the two
formats referenced different as opposed to the same
underlying representations (Lyons et al., 2012).

Third, with respect to the relationship between nonsym-
bolic magnitude processing and more complex math skills, as
discussed in the previous Section Number Sense in Early
Development, evidence for this result is quite mixed, even in
preschoolers and kindergarteners who are just learning to use
symbolic numbers. In sum, then, recent evidence has begun to
erode a strong view of the notion that the meanings of
number symbols are grounded in a direct reference to their
nonsymbolic counterparts. An alternative explanation is that
number symbols are initially linked exclusively via the exact,
nonsymbolic quantities within the subitizing range (�4;
Carey, 2004). Indeed, Le Corre and Carey (2007) showed that
3- and 4-year-old children mapped number words onto cor-
responding magnitudes within the subitizing range prior to
acquiring an understanding of the ‘cardinality principle’ (that
counting to any number yields the number in the set, as
indexed as the last number said). Children at this age failed to
consistently map corresponding number words onto sets
containing more than four items until several months after
acquiring the cardinality principle. Further evidence consis-
tent with this view has been found in adults: the cost of
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mixing symbolic and nonsymbolic formats for small numbers
(�4) is substantially smaller than that found for large
numbers (>4; Lyons et al., 2012), suggesting that subitizable
symbolic and nonsymbolic numbers may retain a strong link
even into adulthood.

Beyond Number Sense

How, then, do number symbols outside the subitizing range
acquire meaning? One idea is that, having established a one-
to-one mapping with nonsymbolic subitizable magnitudes,
the meaning of (numerically) larger symbolic numbers are
then bootstrapped from the smaller number symbols
(Carey, 2004). Precisely how this process occurs, however,
remains a point of debate (Ansari, 2008). One proposal is
that the grammatical structure of language plays a critical
role in inferring the existence and later the meaning of large
exact numbers (Carey, 2004; Le Corre and Carey, 2007;
Almoammer et al., 2013; Sarnecka et al., 2007; Sullivan and
Barner, 2014). Another possibility is that mapping symbolic
numbers to a visual-spatial mental number line is key (e.g.,
Gunderson et al., 2012). Specifically, understanding that the
numerical distance between integers remains constant helps
one to apprehend the notion of large exact numbers, which
is evidenced by a linearization of the number line up to
ever-increasing magnitudes (10, 100, 1000, etc.; Siegler and
Ramani, 2008). Yet another view suggests that how we
understand numbers as ordered sequences differs
fundamentally between symbolic and nonsymbolic
numbers (Lyons and Beilock, 2011, 2013). The ordinal
associations between symbolic numbers may thus provide
one distinct aspect of symbolic numbers’ respective
meaning (Nieder, 2009). These competing views need not
be mutually exclusive, and indeed, they all share the
general assumption that the meanings of larger number
symbols do not remain directly tied to their nonsymbolic
counterpart. (For a competing view that expressly disagrees
with this assumption, see Feigenson et al. (2013).) Note
that this assumption is consistent with a broader view of
symbolic representation more generally (Deacon, 1997; for
an early suggestion applying this perspective specifically to
number representation, see Nieder, 2009). According to this
view, it is the relations between symbols that ultimately
come to define a symbolic system. Over time, these
relations may even come to overshadow each symbol’s link
to an external referent. It is perhaps this that makes it
possible to manipulate very large numbers such as
1 000 000 without having a concrete sense of what
1 000 000 is like. That said, even if such a view proves to
be correct, a major unanswered question concerns the
precise mechanism – whether that be linguistic, visual-
spatial, ordinal, nonsymbolic magnitudes, some
combination thereof, or something else entirely – that links
number symbols to one another. Answering this question is
thus a major contemporary topic of research in the field of
numerical cognition. On a somewhat grander scale, such
research can help us understand how cultural and
evolutionary forces interact within the human brain in
shaping our ability to manipulate the world of and with
mathematics.
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