
Mathematics Anxiety: Separating the Math from the Anxiety

Ian M. Lyons and Sian L. Beilock

Department of Psychology, University of Chicago, Chicago, IL 60637, USA

Address correspondence to Sian L. Beilock, Department of Psychology, The University of Chicago, 5848 South University Avenue, Chicago, IL 60637,

USA. Email: beilock@uchicago.edu.

Anxiety about math is tied to low math grades and standardized
test scores, yet not all math-anxious individuals perform equally
poorly in math. We used functional magnetic resonance imaging to
separate neural activity during the anticipation of doing math from
activity during math performance itself. For higher (but not lower)
math-anxious individuals, increased activity in frontoparietal
regions when simply anticipating doing math mitigated math-
specific performance deficits. This network included bilateral
inferior frontal junction, a region involved in cognitive control and
reappraisal of negative emotional responses. Furthermore, the
relation between frontoparietal anticipatory activity and highly
math-anxious individuals’ math deficits was fully mediated (or
accounted for) by activity in caudate, nucleus accumbens, and
hippocampus during math performance. These subcortical regions
are important for coordinating task demands and motivational
factors during skill execution. Individual differences in how math-
anxious individuals recruit cognitive control resources prior to
doing math and motivational resources during math performance
predict the extent of their math deficits. This work suggests that
educational interventions emphasizing control of negative emo-
tional responses to math stimuli (rather than merely additional math
training) will be most effective in revealing a population of
mathematically competent individuals, who might otherwise go
undiscovered.
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Introduction

Although basic math skills are important for everyday life, many

people report feeling anxious when faced with the prospect of

doing math. Mathematics anxiety is characterized by feelings of

tension, apprehension, and fear about performing math and is

associated with delayed acquisition of core math and number

concepts and poor math competence (Richardson and Suinn

1972). Math anxiety is clearly an impediment to math

achievement (Ashcraft and Ridley 2005; National Mathematics

Advisory Panel 2008). However, not all people high in math

anxiety perform equally poorly in math. This variation in math

performance among the highly math anxious (HMAs) provides an

opportunity (1) to understand the reasons for the negative

relation typically seen between math anxiety and math compe-

tence, and (2) to shed light on how this relation is ameliorated.

In the current work, HMAs and a group of low math-anxious

controls (LMAs) were identified via a common self-report

measure of math-anxiety (Short Math-Anxiety Rating Scale

[SMARS]; Alexander and Martray 1989). All participants

performed a mental arithmetic task and difficulty matched

word-verification task during functional magnetic resonance

image (fMRI) acquisition. Crucially, before each set of problems,

individuals were presented with a cue (a simple colored shape)

identifying the nature of the upcoming task (math or word). This

paradigm, allowed us to separate neural activity underlying the

anticipation of doing math from that of math performance itself.

As a preview, we found that HMAs’ overall performance was

characterized by a math-specific deficit: HMAs showed

significantly poorer math performance relative to a non-math,

difficulty-matched task (LMAs performed the same on both

tasks—Fig. 1). Importantly, some HMAs showed more of a math

deficit than others and these math deficits were not related to

level of reported math anxiety. We thus asked whence this

variation in math deficits among HMAs arises.

One possibility is that some HMAs are better at math than

others. Such a finding would be in-keeping with assertions that

math anxiety is merely a proxy for poor math competence

(Fennema 1989); that is, people with the lowest math

competence are most anxious about their lack of math

proficiency. If so, then activity in neural regions important for

numerical calculation (e.g., left intraparietal sulcus [IPS]; Simon

et al. 2002) should relate to the extent of HMAs’ math deficits.

Moreover, this activity, which supports the successful retrieval

and implementation of mathematical computations, should

occur during math performance itself.

Another possibility is that the anxiety felt by HMAs changes

how they approach math, and this in turn affects math

competence. If so, then neural activity related to HMAs’ math

deficits may be apparent before the math task even begins. For

example, the extent to which HMAs recruit regions related to

attentional control and the reappraisal of negative emotions in

response to a cue indicating that they are about to do math

(e.g., regions such as midposterior dosolateral prefrontal cortex

(DLPFC); Ochsner et al. 2004; Bishop 2007) might predict their

math deficits. The more activity in these regions, the better

HMAs may be at controlling their negative response to the

upcoming math task. This, in turn, may allow for the

coordination of the appropriate neural resources required to

successfully perform the math task.

In sum, for the first time with math-anxious individuals, we

were able to separate the neural correlates underlying the

anticipation of doing math from those of math performance

itself. Our findings shed light on the factors driving the

comorbidity of math anxiety and poor math competence,

knowledge needed to develop the appropriate educational

interventions to ameliorate this relation.

Materials and Methods

Subjects
Subjects were 32 right-handed University of Chicago students (mean

age = 20.47 years, range = 18--25). Math-anxiety groups were

determined using SMARS. Across all prescreened subjects (N = 108),

math-anxiety ratings were in keeping with published norms (our

sample: mean = 32.11, standard deviation [SD] = 15.39; Alexander and
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Martray 1989: mean = 31, SD = 16). To maximize group differences,

upper and lower quintiles of the prescreening group (27 of the original

108 subjects were deemed unsuitable for scanning due to handedness,

outlier responses on one of the other self-report measures, neurological

abnormalities, or safety concerns) were selected to participate in the

fMRI portion of the study: HMA mean = 49.56, SD = 6.98; LMA mean =
15.00, SD = 5.78. Of the 32 subjects thus scanned, 4 were removed from

the data set; 2 were removed due to major scanner artifact, and 2 were

removed because of excess motion. The remaining 28 subjects were

divided into high (HMA: 8 females) and low (LMA: 7 females) math-

anxious groups. Note that HMAs and LMAs did not differ in terms of

either trait anxiety (Spielberger et al. 1970) (P = 0.5438) or working

memory capacity (Unsworth et al. 2005) (P = 0.9134).

fMRI Task Procedure
Subjects performed 2 different tasks (math and word task) in blocked

fashion. Two levels of difficulty were included for each task: hard and

easy. Note, however, that the Group 3 Task interaction did not obtain

for easy problems (F < 1) (for further details, see Supplementary

Information), a result in keeping with previous work showing that

HMAs’ performance is primarily impacted on math problems with high

working memory demands (Ashcraft and Krause 2007). Thus, brain--

behavior analyses were limited to hard problems. Critically, before each

block of trials, a cue was provided that indicated which type of task was

about to follow (the cue did not identify task difficulty). Cues were

either a yellow circle or a blue square. Which cue indicated which task

was randomized across subjects. Cues predicted the corresponding

task with 100% accuracy.

To increase their functional saliency, cues always preceded blocks of

4 trials each. For example, if a flashing square indicated math trials, this

cue was succeeded by a block of 4 math trials. The 4 trials in a block

were separated by a fixed interstimulus interval of 1500 ms. Each trial

had a 5.5 s cut off. This cutoff was well above average task response

times (see Supplementary Information). Cues were presented for 1500

ms. Fixation time between cue offset and trial-block onset was jittered

between 2500 and 6500 ms. This was done to separate neural signals

generated by the cues and signals generated by performing the actual

tasks. Fixation time between trial-block offset and onset of the cue for

the following block was 18 s to allow for resolution of the

hemodynamic response between blocks. This rest period was used to

model baseline activity (modeled for each group separately). Partic-

ipants completed 32 blocks of each task type over the course of 8

functional runs, with 4 blocks of each task presented in each run.

Math Task

Subjects verified whether arithmetic problems had been correctly

solved. All problems were of the form (a 3 b) – c = d; where a 6¼ b, c >

0, d > 0; for hard math problems, 5< a<9, 5< b< 9 (a 3 b> 30), and

15 < c < 19; for foil problems, d ± 2. In addition, subtracting c from a 3

b always involved a borrow operation. Subjects pressed a key with

either their left or right index finger to indicate whether the problem

had been solved correctly (which hand indicated which response was

randomized across subjects; response randomization was independent

of cue randomization).

Word Task

Subjects verified whether a word, if reversed, spelled an actual English

word (all subjects were fluent English speakers). For half of the words,

2 internally adjacent letters were switched such that reversing the

whole letter string would result in a nonword. For example, if subjects

saw the string tneimrepxe, reversing this string would generate

expermient. Because the i and the m have been switched, this is not

an English word, and subjects should respond ‘‘no.’’ For hard word

problems, strings were always 7 letters in length. Subjects pressed a key

with either their left or right index finger to declare whether the string,

when reversed, produced a real word or not. To avoid subject

confusion, the hand that indicated ‘‘not correct’’ for the math problems

also was used to indicate not correct for the word problems.

We chose this task because we were primarily concerned with

creating a control task that was decidedly nonmathematical in nature

but similar to the math task in terms of response and general task-set

properties (both were two-alternative, forced-choice verification

tasks). Crucially, the control task was designed to be as difficult as

the hard math-task—from at least one objective source (behavioral

data)—in the LMA group. We also ensured that performance did not

significantly differ across the HMA and LMA groups on this task (see

behavioral results).

After completion of all scans, subjects were verbally probed to see

(1) if they actually knew which cue prompted which task: all subjects

responded correctly to this question, and (2) if they had inferred the

true focus of the study (math anxiety): none reported having done so.

fMRI Data Acquisition and Analysis

Acquisition and Preprocessing

MRI data were acquired using a 3-T Philips Achieva scanner with an 8-

channel Philips Sense head coil. A T �
2 -weighted echo-planar imaging

sequence was used to acquire functional images covering the whole

brain (32 axial slices) with a repetition time of 2000 ms and an echo

time of 25 ms (ascending acquisition; field of view [FOV]: 240 3 240 3

127.5 mm; 80 3 80 3 32 matrix; flip angle: 80�). In-plane resolution was

3 3 3 mm, and the slice thickness was 3.5 mm (0.5 mm skip). Signal

from the orbital frontal cortex (OFC) and surrounding tissue was

recovered using additional volume shimming with a box of 60 3 60 3

60 mm centered on the OFC area. This method utilizes multiple

‘‘pencil beam’’ acquisitions to compute shim values, using a pencil beam

volume shimming algorithm provided by Philips. Whole-brain high-

resolution anatomical images were acquired in the axial plane (300

slices; slice thickness: 1.2 mm, –0.6 mm gap; x--y dimensions: 1.04 3

1.04; FOV: 250 3 250 3 180 mm, 240 3 240 3 300 matrix) with

a standard Philips T1-weighted SENSE-Ref sequence.

All preprocessing steps and whole-brain data analyses were

conducted using BrainVoyager QX (version 1.10.4, Brain Innovation,

The Netherlands). Functional images were first slice-time corrected

and then motion corrected using sinc interpolation. A high-pass general

linear model (GLM) (Fourier basis set) temporal filter removed

fluctuations <2 cycles, which also removed linear temporal drift. Each

functional run was then manually aligned to the subject’s 3D anatomical

image, both of which were then transformed into Talairach space.

Resulting volumetric time-series files were then spatially smoothed

with a 6 mm full-width at half-maximum Gaussian kernel.

Data were next submitted to a random effects GLM (Friston et al.

1994) with 6 main predictors of interest: math cue, word cue, hard and

easy math task blocks, and hard and easy word task blocks. Seven

predictors of no interest (motion parameters and errant button

Figure 1. Behavioral results: error bars indicate standard errors of the mean. Note
that only HMAs showed a significant difference between tasks (more errors on the
math task).
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presses) were included in the model. In each voxel and for each

subject, parameter estimates (hereafter bs) for each subject and each

condition were thus generated. All second-level analyses (see below)

were conducted using these voxelwise bs.

Second-Level Analyses

For all whole-brain analyses below, statistical maps were thresholded at

P < 0.005 and, subsequently, cluster level corrected for multiple

comparisons using a Monte-Carlo simulation procedure (Forman et al.

1995) with a family-wise false positive rate a = 0.05. With respect to

region of interest (ROI) analyses, for each subject and predictor, ROI-

level bs were determined by averaging bs from all voxels comprising

the ROI volume in question (for that subject and that predictor). Once

extracted, ROI bs were submitted for analysis in Matlab.

In light of recent debate (Kriegeskorte et al. 2009; Vul et al. 2009)

regarding the reporting of correlational values (upon which some of

our analyses rest), we believe we would be remiss if we did not

mention that r values, like any other summary statistic, carry a certain

degree of imprecision, which is exacerbated in cases involving

relatively few degrees of freedom. Therefore, in all tables where we

report correlation estimates expressed either in terms of SDs (r values)

or arbitrary units (b values), we provide standard errors of that estimate

as well (denoted in parentheses beside the actual estimate). Figures

depicting fitted regression lines also contain 95% confidence interval

ranges for these fitted estimates.

Results

Behavioral Results: Math Anxiety and Individual
Performance Differences

Our primary behavioral measure of interest was task error rates

(proportion wrong), which coincides with the fact that perfor-

mance accuracy is what students are graded on in a majority of

math performance situations (Note that behavioral results were

similar for response times [see Supplementary Information];

importantly, there were no (speed-accuracy) trade-offs between

response times and error rates [all Ps > 0.374]).

As mentioned above (also Fig. 1), HMAs produced signif-

icantly more errors than LMAs on the math task (t26 = 3.50, P =
0.0017), but the 2 groups did not differ on the difficulty-

matched word task (t26 = –0.02, P = 0.9923). Furthermore,

HMAs performed more poorly on the math relative to the word

task (t13 = 3.80, P = 0.0022); LMAs did not (t13 = 0.61, P =
0.5535). (Group 3 Task interaction: F1,26 = 16.15, P = 0.0004,

g2 = 0.383.)

Importantly, some HMAs showed a larger math deficit (math

errors minus word errors) than others. Note, however, that

a self-report measure of math anxiety (Alexander and Martray

1989) was not correlated with math deficits in the HMA group

(P = 0.4634).

Analysis 1: Cue Activity--Math-Deficit Correlations

To determine why some HMAs showed larger math perfor-

mance deficits than others, we began by relating math deficits

(difference between math and word error rates) to neural

activity evoked when faced with the prospect of doing math.

We regressed behavioral math deficits on neural activity during

math cue presentation (controlling for word cue activity). For

HMAs, this math deficit was a distribution of positive values; for

LMAs, it centered on zero. The LMA group served mainly as

a control group in demonstrating that our effects were specific

to HMAs, as LMAs had no math deficit to explain. Thus, we

tested whether the observed correlation for HMAs was specific

to that group—that is, whether the slope of predicted math

deficits from cue activity depended on math-anxiety group.

For HMAs, as math deficits decreased (i.e., less of a difference

between math and word error rates), differences in cue activity

(math--word) increased in several regions. These regions were

bilateral inferior frontal junction (IFJ), bilateral inferior parietal

lobe (IPL; this cluster spanned the junction between angular

and supramarginal gyri), and left anterior inferior frontal gyrus

(IFGa). No significant regions were found for LMAs. Table 1

(top) summarizes region details; regions and regression

diagnostics are shown in Figure 2. Note that the relation

between cue activity and math deficits remained highly

significant (Ps < 0.005) even when controlling for ratings of

math anxiety (SMARS). Thus, for HMAs, it is not necessarily the

level of one’s self-reported math anxiety per se that predicts

one’s math deficit; rather, it is one’s ability to call upon

frontoparietal regions before the math task has even begun—-

regions hypothesized to be involved in both cognitive control

(Brass et al. 2005; Derrfuss et al. 2005, 2009) and regulating

negative emotional responses (Ochsner et al. 2004; Bishop

2007). A significant Group 3 Slope interaction obtained in all

regions (all Ps < 0.0330): the relation between math deficits

and frontoparietal cue activity was specific to HMAs.

Because math deficits were regressed on the difference

between math cue and word cue activity (bs), it is important to

determine whether math cue or word cue activity drove the

observed effect in each region. Table 2 (‘‘Correlation Splits’’

columns) shows HMA correlation results for each cue b
separately (i.e., the correlation between raw subject bs and

performance deficits) (LMAs were not considered as there

Table 1
ROI details for Analyses 1 (top) and 2 (bottom)

Region Talairach coordinates Volume (mm3) Correlations Group 3 Slope

x y z HMAs LMAs

R. IFJ 44 13 31 2124 �0.762 (0.116), P 5 0.0015 �0.151 (0.271), P 5 0.6064 P 5 0.0192
L. IFJ �45 7 36 1308 �0.778 (0.109), P 5 0.0011 0.168 (0.270), P 5 0.5667 P 5 0.0034
R. IPL 43 �44 37 951 �0.816 (0.093), P 5 0.0004 �0.279 (0.256), P 5 0.3337 P 5 0.0011
L. IPL �38 �48 33 740 �0.798 (0.101), P 5 0.0006 0.087 (0.275), P 5 0.7679 P 5 0.0006
L. IFGa �40 43 �4 942 �0.720 (0.133), P 5 0.0037 �0.064 (0.276), P 5 0.8267 P 5 0.0330

R. Caud and NAc 9 14 2 1420 �0.882 (0.061), P \ 0.0001 0.451 (0.221), P 5 0.1059 P \ 0.0001
L. Hipp �23 �23 �5 800 �0.849 (0.077), P 5 0.0001 0.189 (0.267), P 5 0.5186 P 5 0.0005

Note: For Analysis 1, cue activity (math [ word) was correlated with math deficits (math [ word error rates). For Analysis 2, task activity (math [ word) was correlated with math deficits (math [
word error rates). Note that all ROIs were localized for HMAs. The rightmost 3 columns reflect correlation details for each region. The first 2 of these columns report mean r values (i.e., averaged across

all voxels in the ROI), corresponding standard errors (in parentheses), and P values for each group. The final column reports the P value associated with the interaction term testing for whether the

observed correlation was in fact specific to the HMAs.
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Figure 2. Depiction of regions and scatter plots from Analysis 1. No effects of hemisphere were found for IFJ regions; thus data are averaged across the 2 hemispheres in the
scatter plot above. Shaded areas in the scatter plots represent 95% confident intervals (observed) for the fitted linear regression line. MC, math cue; WC, word cue. Y-axis: math
deficits (higher number 5 higher math [relative to word] error rate).
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were no significant cue--performance relations identified for

this group). The correlations in IFJ and IPL regions were driven

primarily by math cue activity. The correlation in left IFGa was

driven primarily by word cue activity. This latter result is not

surprising given that this region is canonically associated with

semantic language processing (Vigneau et al. 2006).

To help understand the above results better, we divided the

HMA group into 2 subgroups using a median split based on the

difference between math cue and word cue bs in each of the

ROIs found in Analysis 1. (Note that this clearly constitutes

a form of ‘‘double-dipping’’ [Kriegeskorte et al. 2009] because

these regions were localized based on the relation between

math deficits and the difference between math- and word-cue

activity in HMAs. However, this section is meant merely as an

additional way of thinking about the data rather than as

a definitive analysis unto itself. For simplicity, IFJ and IPL splits

were based on average ranking across hemispheres.) It is worth

noting that mean activity for HMAs was at or near baseline in all

regions (Table 2: HMA Raw bs: Math bs). This was because

about half of HMAs showed activation differences above

baseline and the remaining half somewhere below baseline.

Relative to the lower half of HMAs, the upper half tended to

show greater math cue activity (IFJ: upper half: M = 0.268,

lower half:M = –0.259, t12 = 3.01, P = 0.0109; IPL: upper half:M =
0.155, lower half: M = –0.269, t12 = 2.63, P = 0.0218; LIFGa:

upper half: M = 0.176, lower half: M = –0.201, t12 = 1.97, P =
0.0724) but not word cue activity (IFJ: upper half: M =
–0.157, lower half: M = –0.039, t12 = –0.74, P = 0.4758; IPL:

upper half: M = 0.069, lower half: M = 0.068, t12 = 0.01, P =
0.9906; LIFGa: upper half: M = –0.051, lower half: M = 0.116,

t12 = –0.66, P = 0.5194). In terms of performance, using

a median split based on the average rank across all 5 regions,

the upper half of HMAs showed 17.3% (hard)math errors,

while the lower half showed 32.1% errors (t12 = 2.83, P =
0.0152). The 2 subgroups did not differ with respect to

(hard)word errors (upper half: 14.4%, lower half: 10.3%, t12 =
0.86, P = 0.4091). Thus, HMAs who activated this frontoparietal

network more for the math cue (but not the word cue) also

showed nearly complete elimination of their math deficits

(2.9%, on average), whereas those who did not show this

activation had much greater math deficits (21.8%, on average).

In sum, increased frontoparietal activity in response to the

prospect of doing math predicted reduction in the magnitude

of math deficits in a manner that also depended on whether

one was high in math anxiety. Presumably, then, there should

be some neural region(s) whose activity during actual math

performance directly mediates this relationship.

Analysis 2: Task-Activity--Math-Deficit Correlations

We next investigated activity during math performance itself

that might mediate (or account for) the relation between

frontoparietal cue activity and HMAs’ math deficits. This

analysis was conducted in the same manner as Analysis 1, with

the exception that math deficits were regressed on the

difference between math and word task (rather than cue)

activity. Table 1 (bottom) summarizes region details; Figure 3

shows regions and regression diagnostics.

For HMAs, 2 regions showed a negative relation with math

deficits: right dorsomedial caudate (overlapping with right

nucleus accumbens) and left hippocampus. As the difference

between math and word task activity increased (math--word),

HMAs’ math deficit decreased. Significant Group 3 Slope

interactions indicated that this relation was specific to HMAs

(Table 1, bottom). Furthermore, as seen in Table 2, the

correlations in both regions were driven primarily by a negative

relation between math task activity and math deficits: as math

task activity increased, math deficits decreased. No significant

regions were found for LMAs.

As with Analysis 1, to help understand these results better,

we divided the HMA group into 2 subgroups, this time using

a median split based on the difference between math task and

word task bs in right caudate and left hippocampus. Relative to

the lower half of HMAs, the upper half tended to show greater

math-task activity (caudate: upper half: M = 0.228, lower half: M

= –0.144, t12 = 2.95, P = 0.0121; hippocampus: upper half: M =
0.275, lower half: M = –0.018, t12 = 1.55, P = 0.1480) but not

word task activity (caudate: upper half: M = –0.008, lower half:

M = –0.004, t12 = –0.04, P = 0.9701; hippocampus: upper half: M

= 0.158, lower half: M = 0.196, t12 = –0.26, P = 0.7976). In terms

of performance, using a median split based on the average rank

across the 2 regions, the upper half of HMAs showed 18.0%

(hard)math errors, while the lower half showed 31.4% errors

(t12 = 2.41, P = 0.0327). The 2 subgroups did not differ with

respect to (hard)word errors (upper half: 13.4%, lower half:

10.9%, t12 = 0.61, P = 0.5528). Thus, HMAs who activated this

network more for the math task (but not the word task) almost

completely eliminated their math deficits (4.6%, on average),

Table 2
ROI verification results for Analyses 1 (top) and 2 (bottom)

Region Correlation splits HMA raw bs LMA raw bs

Math b Word b Math b Word b Math b Word b

R. IFJ �0.726 (0.131), P 5 0.0033 �0.051 (0.277), P 5 0.8626 0.001 (0.113) �0.127 (0.096) 0.152 (0.104) �0.162 (0.112)
L. IFJ �0.625 (0.169), P 5 0.0170 0.117 (0.274), P 5 0.6896 0.008 (0.103) �0.068 (0.088) 0.130 (0.082) �0.123 (0.105)
R. IPL �0.729 (0.130), P 5 0.0031 �0.170 (0.269), P 5 0.5601 �0.086, (0.101) �0.016 (0.075) �0.150 (0.106) �0.177 (0.098)
L. IPL �0.696 (0.143), P 5 0.0057 �0.103 (0.274), P 5 0.7259 �0.029 (0.100) 0.153 (0.074) 0.012 (0.122) 0.102 (0.088)
L. IFGa �0.032 (0.277), P 5 0.9129 0.584 (0.183), P 5 0.0282 �0.013 (0.106) 0.031 (0.123) �0.060 (0.094) 0.012 (0.095)

R. Caud and NAc �0.630 (0.167), P 5 0.0158 0.116 (0.274), P 5 0.6935 0.042 (0.079) �0.006 (0.094) 0.230 (0.066) 0.135 (0.048)
L. Hipp �0.723 (0.132), P 5 0.0035 �0.063 (0.276), P 5 0.8302 0.128 (0.100) 0.177 (0.070) 0.011 (0.089) �0.009 (0.080)

Note: For Analysis 1, cue activity (math or word) was correlated with math deficits (math [ word error rates). For Analysis 2, task activity (math or word) was correlated with math deficits (math [
word error rates). Columns labeled Correlation Splits contain HMA correlation results for each task b separately (i.e., the correlation between raw, nonsubtracted, subject bs, and performance deficits).

Cell values report mean r values (i.e., averaged across all voxels in the ROI), corresponding standard errors (in parentheses), and P values for each cue/task type. LMAs were not considered here as there

was no correlation for LMAs in these regions. For Analysis 1, these data demonstrate that the correlations in IFJ and IPL regions were driven primarily by math-cue activity; by contrast, the correlation in

left IFGa was driven primarily by word-cue activity. For Analysis 2, correlations in both right caudate/nucleus accumbens and left hippocampus were primarily driven by math-task activity. The rightmost 4

columns contain raw (nonsubtracted) bs (and standard errors) for both groups and conditions.
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whereas those who did not show this activation difference had

much greater math deficits (20.5%, on average).

Analysis 3: Mediation Framework

In a mediation analysis, one asks whether the direct effect from

an independent variable (IV) to a dependent variable (DV) can

be accounted for by the indirect influence of a mediating

variable (Fig. 4). Significance estimates for indirect effects were

obtained via the bootstrapping method described in Preacher

and Hayes (2008). We treated cue activity (math–word) as our

IV (note that cue activity temporally preceded both task

activity and behavioral performance), task activity as our

mediating factors (math–word) and math-deficits as the DV

we were interested in explaining. In sum, we asked whether

task activity (in Analysis 2 regions) mediated the cue

activity~math-deficit relation reported in Analysis 1.

To assess the criterion that the IV is related to the mediators,

we first tested whether cue activity in the regions identified in

Analysis 1 correlated with task-activity in the regions identified

in Analysis 2. Right caudate task activity was positively

correlated with cue activity in all 5 frontoparietal regions

identified in Analysis 1 (Ps < 0.0058). All effects were specific

to HMAs (Ps< 0.0337). Left hippocampus task activity was also

positively correlated with cue activity in all 5 frontoparietal

regions identified in Analysis 1 (Ps < 0.0037). These

correlations were specific to HMAs for all but left IFJ

(P = 0.2468; all other Ps < 0.0156).

Both right caudate and left hippocampus were included as

simultaneous mediators to examine their combined mediating

effect. (Note that task activity in each region alone provided

a significant mediating influence. However, because these 2

regions were highly correlated with one another in HMAs

Figure 4. Mediation framework: we tested whether task activity in regions identified
in Analysis 2 mediated the relationship c between math deficits and cue activity in
regions identified in Analysis 1. In this framework, one asks whether there is
a significant indirect effect of the mediator (quantified as the product of the
unstandardized path coefficients, a and b, in the figure above) that accounts for some
portion of the direct effect c originally observed between the independent (in this
case, cue activity) and the dependent (in this case, math deficit) variables. When
more than one mediator is considered at a time, the total mediating influence is the
sum of the products aibi, for i 5 1 . . . n mediators. The remaining (unmediated)
direct effect is denoted c’. Full mediation occurs when ab is significant but c’ is not;
partial mediation refers to when both ab and c’ remain significant. Note that in this
framework, the model is constrained by the assumption that c 5 ab þ c’. In other
words, unlike in a standard multiple regression analysis, we are explicitly asking what
portion of the IV--DV (cue activity--math deficit) relationship can be accounted for by
the proposed mediating variable (task activity).

Figure 3. Analysis 2 regions and scatter plots. Note that the right caudate region spans both the medial head of the caudate and nucleus accumbens (NAc). Shaded areas in the
scatter plots represent 95% confident intervals (observed) for the fitted linear regression line. Y-axis: math-deficits (higher number 5 higher math [relative to word] error rate).
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[r = 0.919], for simplicity, we treat them here as a single

influence [for details, see Fig. 4]. Note also that hippocampus

and dorsomedial caudate are highly interconnected and are

thought to form a tightly coupled network that plays a role in

flexible online processing [White 2009]). We treated each of

the 5 cue regions (left and right IFJ, IPL, and left IFGa) as

separate IVs. In addition, we constructed a model that assumed

the net signal from all 5 regions served as a unified (averaged)

signal. This was because, for HMAs, cue activity (math cue --

word cue) was highly correlated between these regions (mean

r = 0.809; range: 0.745 to 0.898). In this way, 6 separate models

were run: one for each of the 5 cue regions and one for the cue

network average. The combined mediating effect of right

caudate and left hippocampus was significant in all 6 models

(Ps < 0.0206) (Table 3). In sum, hippocampus and caudate/

NAc task activity mediated the frontoparietal cue activity--

math-deficit relation seen in Figure 2.

Discussion

Our central aim was to identify neural areas—during both the

anticipation and performance of math—that predict variation

in the math deficits exhibited by HMAs individuals. In doing so,

we reveal (1) neural evidence that the negative relation

typically seen between math anxiety and math competence

arises even before math performance begins, and (2) how some

HMAs may overcome this math-specific deficit.

Math deficits were predicted by cue activity in a network of

inferior frontoparietal regions (IFJ, IPL, left IFGa) and in

a manner statistically specific to HMAs—a relation driven

primarily by math-cue activity in the IFJ and IPL regions (Tables

1 and 2). One possibility is that the reduced math deficits

exhibited by some HMAs are the result of these individuals

ramping up cognitive control resources when anticipating

math in a manner that allows them to change the way they

approach performing the upcoming math task.

The bilateral IFJ regions in particular correspond to an area

of the cortex associated with high-level cognitive control

processes such as task- or set-shifting and inhibition of

prepotent responses (Brass et al. 2005; Derrfuss et al. 2005,

2009). A prominent theory regarding the negative impact of

anxiety on cognitive task performance (attentional control

theory) (Eysenck et al. 2007) suggests that anxiety compro-

mises performance via limiting the successful operation of

attention shifting and inhibitory processes. For instance,

anxious individuals, when in the context of emotion-inducing

stimuli, tend to exhibit poorer control of saccades (Ansari

et al. 2008; Wieser et al. 2009), poorer task-switching ability

during mental arithmetic performance (Derakshan et al. 2009)

and poorer performance in an emotional Stroop paradigm

(Reinholdt-Dunne et al. 2009). This evidence is also consistent

with the suggestion that math anxiety involves a reduction in

control-related working memory capacity (Hopko et al. 1998;

Ashcraft and Krause 2007; Beilock 2008). Our results suggest

that, in a math-anxiety-inducing context, some HMAs are able

to overcome such attentional deficits by ramping up control

resources before the math itself begins—a process which may

allow them to reappraise their approach to the upcoming

math task as well.

Consistent with this view, in a meta-analysis, Bishop (2007)

identified a cluster of activations centered on bilateral IFJ

associated with interpretation of potentially threat-related

stimuli. Similarly, Ochsner et al. (2004) found that regulation

of negative emotions via reappraisal was related to increased

activity in bilateral DLPFC (note that in many studies cited,

activations overlapping with the IFJ region reported here are

sometimes labeled ‘‘DLPFC’’). Overlap between activations seen

in Ochsner et al. (2004) and the IFJ regions in the current work

was observed in the Ochsner et al. (2004) condition where

participants were explicitly instructed to reduce the inter-

preted negative emotional content of visual images. Thus, it

may be that HMAs who most successfully reappraised their

negative emotional response to the prospect of doing math are

most successful at reducing math deficits. Importantly, accord-

ing to this interpretation, such a relationship should not be

seen for LMAs because they do not have a negative emotional

response in anticipation of math that requires reinterpreting.

In addition, it is worth noting that cue activity was not

related to math deficits in regions typically associated with

anxiety responses (e.g., amygdala [LeDoux 2000], hypothala-

mus [Dedovic et al. 2009], insula [Domschke et al. 2010]).

Moreover, task activity in regions associated with arithmetic

calculation did not predict math deficits in HMAs either (e.g.,

left IPS [Simon et al. 2002]). Thus, our data are most consistent

with the notion that HMAs’ math deficits are determined

primarily by how well they respond to and perhaps reinterpret

their anxiety response rather than by the magnitude of those

anxiety responses or their math skills per se.

Cue activity was positively correlated with task activity

in 2 subcortical regions: right caudate nucleus and left

hippocampus—again, in a manner specific to HMAs. Task activ-

ity in these regions was in turn correlated with performance,

such that HMAs who showed relatively greater math- than

word-task activity showed the smallest math deficits. In

Table 3
Mediation analysis for HMAs

Independent variable (cue activity) Combined mediators (task activity) L. Hipp and R. Caud/NAc

Region Original IV--DV effect (c) Mediation effect (ab) Unmediated effect (c’)

R. IFJ �0.246 (0.060), P 5 0.0015 �0.152 (0.061), P 5 0.0129 �0.094 (0.064), P 5 0.1771
L. IFJ �0.258 (0.060), P 5 0.0011 �0.156 (0.058), P 5 0.0071 �0.102 (0.060), P 5 0.1219
R. IPL �0.355 (0.073), P 5 0.0004 �0.210 (0.077), P 5 0.0066 �0.145 (0.088), P 5 0.1307
L. IPL �0.334 (0.073), P 5 0.0006 �0.202 (0.073), P 5 0.0056 �0.132 (0.080), P 5 0.1283
L. IFGa �0.223 (0.062), P 5 0.0037 �0.139 (0.060), P 5 0.0206 �0.084 (0.059), P 5 0.1839
Network average �0.318 (0.064), P 5 0.0003 �0.182 (0.068), P 5 0.0071 �0.154 (0.079), P 5 0.0802

Note: The 6 models considered are listed in rows under Region. Original IV--DV effect (denoted c in Fig. 4) refers to the original cue--performance relationship to be explained. Total mediation effect

(product of a and b in Fig. 4) refers to the IV--DV effect indirectly explained by the combined influence of mediator (task activity in both left hippocampus and right caudate/NAc). (Individual region

contributions for left hippocampus and right caudate/NAc can be found in Supplementary Information.) Nonmediated IV--DV effect (denoted c’ in Fig. 4) refers to the remaining effect of the IV on the DV

that cannot be explained by the mediators. Cell values: linear regression estimate, (standard error), P value.
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addition, this task activity fully mediated the relation between

cue activity (in regions noted above) and math deficits in

HMAs. Dorsomedial caudate and the hippocampus (especially

the fimbria--fornix substructure) are highly interconnected

regions and have been shown to cooperate in flexible stimulus-

response learning in rats (White 2009). Interestingly, right

caudate and left hippocampus have been found to be

functionally interconnected in humans in the context of active

episodic and semantic memory retrieval (Burianova and Grady

2007)—which is highly consistent with the strong degree of

functional connectivity found between HMA right caudate and

left hippocampus in our data. Left midposterior hippocampus

in particular is thought to be central to maintaining information

in one’s episodic working memory buffer (Rudner et al. 2007;

Berlingeri et al. 2008). Together, these regions are thought to

play a central role in integrating higher level cognitive control

of goal-driven actions (i.e., through selection of appropriate

action schemas) with motivational and reward context (Grahn

et al. 2008).

Anatomically the caudate head receives primarily glutama-

tergic inputs from prefrontal areas such as DLPFC and anterior

cingulate cortex, as well as dopaminergic inputs arising from

nearby nucleus accumbens and ventral midbrain regions (Utter

and Basso 2008). Dopamine levels in dorsal caudate have also

been shown to correlate with delay activity (i.e., while holding

information in mind) in left IFJ during a Sternberg delayed-

recognition working-memory task (Landau et al. 2009). One

interpretation of the mediating role observed for caudate in the

current data set is that HMAs who show the smallest math

deficits do so because they are able to dynamically reorganize

their approach to doing math. If HMAs’ default response is to

avoid math or just wait for it to be over, a more approach-

oriented response is likely needed to successfully engage in the

actual cognitive requirements of math performance (Markman

et al. 2006). Consistent with this interpretation, the caudate

region we identified also overlaps with nucleus accumbens

(Fig. 3). Nucleus accumbens is believed to be central for

motivating behavior (both appetitive and aversive) and

regulating effortful functioning (Salamone 1994; Nicola et al.

2005; Salamone et al. 2007).

To summarize, we demonstrate that the mechanisms

associated with the reduction—and even elimination—of

math-specific performance deficits in HMAs are initiated before

actual math processing occurs. However, it is not variation in

HMAs’ math anxiety per se that best predicts the extent of their

math-specific deficits. Rather, our data indicate that the extent

of HMAs’ math deficits is associated with the ability to ramp up

cognitive control resources in response to the prospect of

doing math, which leads to a reorganization of task priorities,

due at least in part to motivational factors. To our knowledge,

this work serves as the first evidence from cognitive

neuroscience in support of the idea that education interven-

tions which emphasize the control of negative emotional

responses to math stimuli may reveal a population of

potentially numerically competent individuals (see McCandliss

2010, in support of an educational neuroscience approach

more generally). In particular, the fact that PFC regions

typically associated with cognitive control and working

memory processes (Kane and Engle 2002; Brass et al. 2005)

were found to be related to performance during the cue but

not the actual task is highly consistent with the process model

of emotion regulation proposed by Gross (1998, 2002). In this

model, emotional control processes that act early on the

arousal of negative affective responses (e.g., reappraisal) are

more effective at mitigating these responses and limiting

concomitant performance decrements than explicit suppres-

sion of these responses later in the affective process (e.g.,

during online performance). Interestingly, recent evidence has

shown that a similar approach highlighting the reappraisal of

negative emotional reactions has proven effective, for example,

in allaying the negative impact on math performance due to

fear of confirming negative stereotypes about one’s academic

abilities (i.e., stereotype threat; Johns et al. 2008).

The current findings therefore suggest that best educational

practices for enhancing math competency in HMAs is not to

generate costly math courses specifically for the HMAs

(Gresham 2007) nor is the best method likely to be one that

focuses solely on eliminating one’s initial anxiety response (for

a review of these and other approaches, see especially

Hembree 1990). Instead, classroom practices that help students

learn how to marshal cognitive control resources and

effectively check one’s math-related anxiety response once it

occurs—but before it has a chance to reduce actual math

performance—will likely be the most successful avenue for

reducing anxiety-related math deficits.
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