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1. Introduction

In two different contexts, we examined the hypothesis that individual differences in work-
ing memory (WM) capacity are related to the tendency to infer complex, ordinal relation-
ships between numerical symbols. In Experiment 1, we assessed whether this tendency
arises in a learning context that involves mapping novel symbols to quantities by training
adult participants to associate dot-quantities with novel symbols, the overall relative order
of which had to be inferred. Performance was best for participants who were higher in WM
capacity (HWMs). HWMs also learned ordinal information about the symbols that lower
WM individuals (LWMs) did not. In Experiment 2, we examined whether WM relates to
performance when participants are explicitly instructed to make numerical order judg-
ments about highly enculturated numerical symbols by having participants indicate
whether sets of three Arabic numerals were in increasing order. All participants responded
faster when sequential sets (3-4-5) were in order than when they were not. However, only
HWMs responded faster when non-sequential, patterned sets (1-3-5) were in order, sug-
gesting they were accessing ordinal associations that LWMs were not. Taken together,
these experiments indicate that WM capacity plays a key role in extending symbolic num-
ber representations beyond their quantity referents to include symbol-symbol ordinal
associations, both in a learning context and in terms of explicitly accessing ordinal relation-
ships in highly enculturated stimuli.

© 2009 Elsevier B.V. All rights reserved.

In the current work, we turn our attention to people’s
ordinal understanding of numerical symbols. In particular,

Numerical representations can be thought of as having
two interrelated aspects: a sense of quantity (about six ap-
ples; Dehaene, 1997) and relative order (six comes before
seven and after five; Jacob & Nieder, 2008; Tzelgov & Ga-
nor-Stern, 2004). Although these aspects are certainly
intertwined (Fias, Lammertyn, Caessens, & Orban, 2007),
the majority of previous research on symbolic number pro-
cessing has focused on the quantitative aspect of symbolic
numbers. However, mounting behavioral evidence indi-
cates that relative order information plays a particularly
important role in symbolic numerical representation (Rogg-
eman, Verguts, & Fias, 2006; Turconi, Campbell, & Seron,
2006).
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we examined how a general cognitive capacity - namely,
working memory (WM) - relates to individual differences
in numerical understanding via variation in how relative
order information is acquired and accessed. Because com-
plex mathematical processes rely strongly on symbolic
representations as well as WM (e.g., Ashcraft & Krause,
2007), understanding the interaction between ordinal
processing and WM may provide important insight into
why some excel in mathematics while others struggle.

1.1. Working memory and symbolic numerical representation

What are the cognitive and neural operations that sup-
port the learning and access of symbolic numbers? A
prominent neuronal model suggests that Arabic numerals
are understood by mapping them on to pre-existing
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representations of approximate quantity (Verguts & Fias,
2004; see also Ansari, 2008; Dehaene & Changeaux,
1993; Nieder & Merten, 2007). Neuronal evidence provides
some support for this view: Diester and Nieder (2007)
trained monkeys to associate Arabic numerals with corre-
sponding quantities of dots and used single neuron record-
ings to locate cells involved in this process. The authors
found individual neurons that responded maximally to a
specific quantity, whether that quantity was presented as
dots or the corresponding Arabic numeral. Intriguingly,
the majority of these ‘association neurons’ (neurons tuned
to the same quantity regardless of format) were found in
monkey prefrontal cortex.

Prefrontal cortices in monkeys and humans routinely
activate in tasks with high WM demands (Kane & Engle,
2002; Wager & Smith, 2003) and individuals characteristi-
cally higher in constructs closely related to working mem-
ory (e.g., general fluid intelligence, or gF) activate these
areas to a greater extent than lower gF individuals when
performing cognitively demanding tasks (Gray, Chabris, &
Braver, 2003). This suggests that higher-level cognitive
capacities, such as WM, may play an important role in
mapping numerical quantities onto abstract visual sym-
bols. For this reason, it seems plausible that the symbol-
mapping process and the representation of overlearned
numerical symbols may vary as a function of one’s WM
capacity.

Working memory can be thought of as a short-term
memory system involved in the control, regulation, and ac-
tive maintenance of a limited amount of information with
immediate relevance to the task at hand (Miyake & Shah,
1999). Previous work has shown that WM is critical to a
wide range of mathematical tasks - such as carrying oper-
ations (Imbo, Vandierendonck, & Vergauwe, 2007), count-
ing speed (Tuholski, Engle, & Baylis, 2001), mental
arithmetic (LeFevre, DeStefano, Coleman, & Shanahan,
2004; Logie, Gilhooly, & Wynn, 1994), and even the selec-
tion of strategies used in completing complex arithmetic
problems (Beilock & Decaro, 2007; for a review, see also
Ashcraft & Krause, 2007).

In the current study, we suggest that, at the level of
individual differences, ordinal understanding of symbolic
numbers is strongly related to WM capacity. We examined
this hypothesis in two different contexts. In Experiment 1,
we assessed whether individual differences in WM capac-
ity are related to the tendency to infer complex, ordinal
relationships in a numerical symbol-learning task. In
Experiment 2, we take our work a step further and ask
whether the relation between WM and an individual’s
emphasis on ordinal associations generalizes to a task
requiring explicit relative order judgments about highly
enculturated numerical symbols: Arabic numerals.

2. Experiment 1

The ability to map numerical quantities onto symbols
(e.g., Arabic numerals) and to subsequently retrieve this
quantity information when presented with these numeri-
cal symbols at a later time is an important mathematical
skill. Without this type of numerical symbol-mapping,

important mathematical activities are outside one’s reach.
For example, cultures without distinct symbols or words
for quantities exceeding the first few integers are only able
to perform exact calculations by approximating the correct
answer (Pica, Lemer, Izard, & Dehaene, 2004). Because
numerical symbol-mapping carries implications for com-
plex math skills like counting and arithmetic (Gallistel &
Gelman, 1992), an understanding of how people vary in
their acquisition and representation of numerical symbols
is important for the development of educational practices
and teaching tools that ensure high-level number under-
standing in all individuals.

Thus, in Experiment 1, we addressed two interrelated
questions. First, we asked whether emphasis on order
information when acquiring a set of novel numerical sym-
bols is related to how well participants learn to use these
novel symbols in numerical tasks. Given that relative order
information plays an important role in symbolic number
representation (Roggeman et al.,, 2006; Turconi et al.,
2006), this seems plausible. Second, we asked whether
individual differences in WM capacity dictate who empha-
sizes order in the first place. Specifically, we hypothesized
that individuals higher in WM (HWMs) would be more
likely to infer ordinal relations than lower working mem-
ory individuals (LWMs) (see reasons for this assumption
below), and that this would lead to better overall perfor-
mance for HWMs when acquiring a set of novel numerical
symbols. To address these issues, we had participants learn
to associate non-symbolic numerical quantities (in the
form of dot-arrays presented too rapidly to count) with
six novel visual shapes. Participants then performed a ser-
ies of numerical tasks designed to shed light on their grasp
of the symbols’ numerical content.

How might individual differences in WM be related to
the symbol-mapping process? On the one hand, one might
assume that this process is simple enough to be con-
strained to brain regions canonically associated with
numerical processes (Dehaene, Piazza, Pinel, & Cohen,
2003) and thus would not vary as a function of individual
differences in more domain-general capacities. One the
other hand, as mentioned above, Diester and Nieder
(2007) found evidence of numerical tuning in neurons in
monkey prefrontal cortex. In addition, Lyons and Ansari
(2009) recently showed activation in a left prefrontal re-
gion also implicated in WM-dependent tasks when people
learned to map quantities onto abstract symbols. Thus, an
alternative view is that individual differences in WM
capacity are a key driving force behind the speed and man-
ner in which the numerical symbol-mapping process oc-
curs. One possibility is that this occurs via WM-related
differences in strategy selection.

It has recently been shown that variation in WM affects
the strategies individuals employ to solve complex tasks.
For instance, Beilock and DeCaro (2007) showed that when
solving a multi-step math problem, the higher one’s WM,
the more likely one is to use a complex strategy (as op-
posed to a simpler ‘short-cut’ strategy). Likewise, Decaro,
Thomas, and Beilock (2008) have shown that individual
differences in WM impact how one learns complex catego-
ries, and they have suggested this is precisely because indi-
viduals higher in WM are more likely to use complex
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hypotheses to test category membership than their lower
WM counterparts (for the role of WM-related differences
in logical and hypothesis-testing processes more generally,
see also De Neys, 2006; Evans, 2003; Stanovich & West,
2000).

If LWMs are less likely to hypothesis test than HWMs
(Beilock & Decaro, 2007; Decaro et al., 2008; DeCaro, Carl-
son, Thomas, & Beilock, 2009), then while learning the
quantities associated with abstract novel symbols, LWMs
may use the simpler strategy of directly associating a
quantity with the symbols’ visual shape. This would leave
the relative order of such symbols deducible, but only indi-
rectly so, by referring back to the quantity each symbol
represents. In this case, as the quantity of dots represented
by a given symbol increases, numerical performance
should decrease. Numerous studies have shown that repre-
sentations of approximate, non-symbolic quantities (e.g.,
arrays of dots) become less precise as quantity increases
(e.g., Buckley & Gillman, 1974; Moyer & Landauer, 1967).

HWNMs, on the other hand, might be more inclined to go
further. Specifically, as part of the learning process, HWMs
might generate and test hypotheses regarding the symbol-
set’s relative order implied by symbol-quantity associa-
tions. In this case, if HWMs, in addition to learning the
quantity of dots represented by each symbol, rely on a
strategy that also emphasizes the relative order of the
symbols during learning (whereby the quantity associated
with a given symbol serves as a cue for learning the sym-
bols’ relative ordinal position), then the lowest and highest
magnitude symbols may acquire special status as they rep-
resent the most extreme components of the symbol con-
tinuum (Leth-Steensen & Marley, 2000). Demonstrating
the above mentioned WM differences would not only show
that individual differences in a general cognitive capacity
affect how we acquire numerical symbols, but also that
strategies which emphasize ordinal relations among sym-
bols play a key role in imbuing numerical representations
with their full array of associative meaning.

It should be noted that previous studies have used novel
training stimuli in simulating numerical and ordinal learn-
ing processes. Using both behavioral (Tzelgov, Yehene,
Kotler, & Alon, 2000) and neuroimaging (Van Opstal,
Verguts, Orban, & Fias, 2008) measures, researchers have
shown that participants can make ordinal inferences about
novel shapes that extend beyond the specific ordered pairs
on which they were initially trained. In those studies, par-
ticipants were shown pairs of novel shapes and received
feedback after each judgment about which shape came
later in terms of some unknown order (i.e., symbols were
never associated with actual numerical quantities). By
contrast, we were interested in whether the tendency to
spontaneously infer ordinal relationships over and above
simple symbol-quantity associations depends on individ-
ual differences in general cognitive abilities. Here it is
crucial to note that the main goal of our task (from the
participant’s perspective) was to associate symbols with
quantities, which allowed us to probe the relation between
performance, WM, and the tendency to derive order-based
strategies not explicitly required by the structure of the task.

To ensure that any observed differences in symbol-
mapping as a function of WM capacity are indeed due to

strategic differences related to emphasis of order informa-
tion during symbol acquisition (rather than WM-related
differences in the precision with which participants repre-
sent numerical quantities per se), we also examined
whether WM capacity is related to representations of over-
learned symbolic numbers (Arabic numerals) and non-
symbolic approximate quantities (dot-arrays). Our goal
was to show that HWMs are not simply better at discrim-
inating symbolic and/or non-symbolic numerical ratios,
but that HWMs’ advantage in learning novel numerical
symbol sets stems instead from strategic inferences of or-
der-based information that LWMs are less likely to make.

2.1. Methods

2.1.1. Participants

Participants (N = 51; 34 female) were University of Chi-
cago students (age: 18-36 years; M = 22.5 years) who took
part in the experiment for course credit or monetary
compensation.

2.1.2. Working memory measures

Individual differences in working memory were deter-
mined by taking the average of scores on two commonly
used measures of WM: the automated reading- and opera-
tion-span tasks (aR-span and aO-span; Conway et al.,
2005; Unsworth, Heitz, Schrock, & Engle, 2005). aR-span
and aO-span were strongly correlated in our data
[r(49) =.630, p <.001].

In the aR-span, participants judge the sensibility of sen-
tences (e.g., “The only furniture Steve had in his first bowl
was his waterbed.”) and then remember a single letter. All
participants perform 15 sentence-letter sequences, after
which they are asked to recall the letters in the order
presented. Sequences range from 3 to 7 letters in length.
Three sequences of each length are presented to all partic-
ipants, with the caveat that presentation order of the
sequences themselves is randomized across participants.
A participant’s score for that sequence is accuracy * length,
where accuracy is whether all letters were recalled in the
correct order (1 or 0) and length is the number of letters
in the sequence in question. Scores for all sequences are
then summed to determine the subject’s final aR-span
score (range: 0-75). aO-Span is identical to aR-span, with
the exception that, instead of verifying the sensibility of
sentences, participants verify whether simple math prob-
lems (e.g., 5 +4 — 3 =9) have been correctly solved. A min-
imum level of accuracy must be maintained in the
sentence/math-problem component of the task - 85% cor-
rect — for a participant’s span-score to be considered valid.
All working memory tasks were performed in a separate
session that occurred within roughly one week of the main
symbol-learning session (see below). Presentation order
for the aO- and aR-span tasks was counterbalanced across
participants.

It should be noted that in all primary analyses in Exper-
iment 1 (and Experiment 2), WM was treated as a contin-
uous variable. However, for ease of visualization and in
certain analyses where it was deemed prudent in facilitat-
ing data interpretation, we also present results in terms of
high and low WM groups. Groups were determined based
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on the upper and lower third of the average WM-span
scores (in Experiment 1, HWMs: n=17, M=62.50,
SE=148, cutoff Ty=51; LWMs: n=16, M=21.81,
SE=2.45, cutoff T; =32). For aO-span, Unsworth et al.
(2005) report the following population norms: lower-quar-
tile cutoff (Q.) = 28, upper-quartile cutoff (Qu)) =51. Thus,
our cutoffs are overall in keeping with published norms.

2.1.3. Procedure

After giving informed consent, participants were told
they were to learn to associate quantities of dots with no-
vel visual shapes (or ‘symbols’). Symbols were generated
by randomly rearranging 16 20 pixel? composite red and
white shapes in a 4 x 4 (80 pixel?) grid. This method en-
sured that all symbols were novel and comprised of the
same basic features, and that these features were equated
in terms of quantitative dimensions (size, amount of ‘red-
ness’, etc.).

Participants first learned to recognize the symbols in
terms of their perceptual features. Participants studied 6
target symbols as 3 cm? laminated cards and were in-
formed of their proper orientation. After 2 min, the sym-
bols were removed and randomly intermixed with 18
distracter symbols (consisting of a randomly arranged
composite of the same 16 features used to make the target
symbols). Participants had 2 min to identify the 6 target
symbols they had studied (with no false alarms). If this
did not occur, the procedure was repeated (iterations to
reach criterion: M =1.75; SE =.12; Max = 4).

Participants next completed a computerized training
session where they learned to associate 6 different dot-
quantities (9, 18, 27, 36, 45 and 54 dots) with the 6 target
symbols (Fig. 1). The number of dots associated with a gi-
ven symbol was fixed throughout the experiment. Each
symbol was presented with its respective dot-quantity 8
times (using 8 different arrays). This constituted 1 block.
Once all 6 symbols had been presented (1 block for each
symbol), participants were allowed to rest. The block se-
quence was then repeated (8 times in total). Across differ-
ent sequences, blocks were presented in pseudo-
randomized order to prevent participants from inferring
the symbols’ relative numerical order based on presenta-
tion order (see Fig. 2a for an overview of the symbol-train-
ing sequence.)

Each time a symbol was presented, it was located at the
central fixation position. Eight separate arrays of dots (all
of the same quantity) were briefly flashed nearby - one ar-
ray at a time - each in one of 8 possible locationsina 3 x 3
grid of 256 pixel? tiles (with the symbol always occupying
the center tile). Each tile subtended to a visual angle ~4.6°
per side. Each array was presented for 500 ms, thus ensur-

0Ll 4

ing that participants could only associate estimated
approximate numerical magnitudes with each symbol,
rather than count the exact number of dots. Importantly,
the dot-arrays were counterbalanced across numerosities
with respect to continuous parameters, including individ-
ual and aggregate dot-area, contour length (or group
perimeter), and local density (or average minimum dis-
tance between dots). This was done to reduce the possibil-
ity that these factors might serve as indirect cues to the
number of dots associated with each symbol. As no dot-ar-
ray was ever repeated, pattern recognition could not pro-
vide a reliable cue for learning the associated dot-
quantities. Stimuli were displayed at 1280 x 1024-resolu-
tion on a 19.1” Dell flat-panel monitor located 1 m from
the participant. At this distance, each symbol subtended
to a visual angle ~1.5°.

After training, participants performed several tasks de-
signed to gauge symbol learning. Individuals first per-
formed two comparison tasks using the novel symbols
(the greater-than and ascending tasks, see below). To assess
individuals’ ability to represent basic numerical quantities,
participants next performed these comparison tasks with
dot-arrays and Arabic numerals. Participants then per-
formed a global ordering task using the novel symbols -
designed to gauge their knowledge of the symbols’ overall
order. Finally, individuals were asked about any strategies
they used to learn the novel symbols. Participants were
then compensated for their time, thanked, and debriefed.

2.1.4. Tasks

Symbol comparison tasks. Individuals performed two
numerical comparison tasks (greater-than and ascending
tasks) using the recently acquired novel symbols. In both
tasks, two symbols were presented simultaneously, one
on either side of fixation (Fig. 2¢). The symbols remained
on the screen for 1000 ms, after which the screen went
blank. This ensured that comparison stimuli were viewed
for a maximum of 1000 ms regardless of time required to
respond.

In the greater-than task, if the symbol that represented
the greater quantity of dots was on the left side of the
screen, participants pressed a key with their left-index-fin-
ger; if it was on the right, they pressed a second key with
their right-index-finger. In the ascending task, if the sym-
bols were in ascending order from left to right in terms of
the quantities they represented, participants made a left-
index-finger key press. If, instead, the symbols were in
ascending order from right to left, they made a right-in-
dex-finger response.

For each of the above tasks, participants completed four
blocks of 30 trials. All possible symbol-pair combinations

AN A
VA" = = . ||

AW
36 45 54

Fig. 1. This figure depicts the actual novel symbols used in Experiment 1. The Arabic numeral beneath each symbol represents that actual quantity of dots

with which it was associated.
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[3] 1 block for each symbol (6 blocks) = 1 sequence. Total training = 8 sequences.

Novel Symbol Training

"Associate the approximate
number of dots with the symbol.”

[b] Global Ordering Task
I I 2@
"Place the symbols into the boxes m

in increasing numerical order (from left to right)."

[c] 1 Trial

I 8 arrays = 1 block
r 1

until response

Novel Symbol
Comparison
Tasks

1500ms

maximum

Rest 8 arrays = 1 block Rest l
T aua T Taaa LT

+

500ms

[d] 1 Trial

I until response IS1
Dot-Array e
Comparison
Tasks
1000ms 1500ms
maximum
[e] 1 Trial
I until response ISI I
Arabic Numeral e -
Comparison e
Tasks
1000ms 1500ms
maximum

Fig. 2. This figure depicts Experiment 1 training and assessment tasks. Panel (a) shows the novel-symbol training procedure. Note that block-order was
counterbalanced across presentation sequences. Panel (b) shows the global ordering task. Participants were handed copies of the symbols as small
laminated cards (shuffled beforehand), and were asked to place the symbols in boxes printed on the provided piece of paper. No time limit was given for this
task. Panels (c-e) show the comparison tasks for novel symbol, dot-array and Arabic numeral stimulus types, respectively. Note that stimulus presentation
for the two types of comparison tasks (greater-than and ascending) was identical. Stimuli for the comparison tasks were presented for a maximum of
1000 ms. If participants responded before this time limit, the sequence immediately moved to the inter-stimulus-interval (ISI); otherwise, stimuli
disappeared after 1000 ms, leaving a blank screen, which remained until subjects responded.

were repeated twice per block, once per side (i.e., within a
block, a given symbol pair was presented once in left-right
and once in right-left orientation). Across all blocks, each
pair was presented a total of eight times. Task order was
counterbalanced across participants.

Dot-array and Arabic numeral comparisons. Participants
performed the same two comparison tasks described
above (i.e., greater-than and ascending tasks), with the
exception that (a) arrays of dots and (b) two-digit numbers
written as Arabic numerals were used instead of the novel
symbols (Fig. 2d-e). Note that the quantities used for dot
and numeral comparisons were the same as those repre-
sented by the novel symbols. Dot-arrays were counterbal-
anced in terms of continuous parameters in the same
manner as the novel-symbol training stimuli. To eliminate
the possibility that pattern recognition could be used as a
cue in making comparison judgments, all dot-stimuli were
presented only once and did not overlap with the sample
used in the novel-symbol training procedure.

Global ordering task. This task assessed participants’ rep-
resentations of the novel symbols’ overall numerical order
(see Fig. 2b). Participants were presented with a piece of
paper containing six horizontally arranged boxes and given
the same laminated cards (in a random order) depicting
the six symbols used in the first symbol recognition phase.
Participants were asked to arrange the six symbols in
increasing order from left to right in the six boxes on the
provided paper. There was no time limit for this task, and
no feedback was provided.

2.2. Results

2.2.1. Novel symbols: global ordering task

Accuracy was coded in terms of whether participants
placed the novel symbols in the correct positions. For
example, if the numerically smallest symbol was placed
in the position farthest to the left, that individual received
a 1 for that symbol; otherwise they received a 0. Thus,
chance performance for a given symbol was 16.7% correct,
across subjects. Data were analyzed using a WM x 6(sym-
bol: 9, 18, 27, 36, 45, 54 dots) mixed-design analysis of
covariance (ANCOVA), with WM as a between-subjects
continuous factor and symbol as a within-subjects discrete
factor.

This analysis produced a significant main effect of sym-
bol [F(5, 245) = 6.92, p <.001], in which there was an over-
all decrease in accuracy as the quantity a symbol
represented increased. There was also a significant main
effect of WM [F(1,49) = 17.78, p <.001]. Overall, the higher
one’s WM, the more accurate was one’s performance
[r(49)=.516, p <.001]. Crucially, these main effects were
qualified by a significant WM x symbol interaction
[F(5,245)=4.59, p <.001]. There was no significant rela-
tion between WM and accuracy for the numerically small-
est symbol [r(49)=.133, p =.352]. However, there was a
strong positive relation between WM and accuracy at the
numerically greatest symbol [r(49)=.631, p<.001]. As
can be seen in Fig. 3, this correlation was driven by an
upturn in accuracy for HWMs at the highest symbols
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Novel Symbol Global Ordering Task

et
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g
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=
[*]
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(<]
[
o

19) 11(18) III(27) IV(36) V(45) VI(54)

SYMBOL

Fig. 3. This figure depicts cell means (proportion correct) on the Experiment 1 global ordering task. For the purposes of visualizing the data, the factor WM
is presented as high (upper third) and low WM (lower third) groups. Symbols are noted using Roman numerals; the number in parentheses is the quantity
of dots with which that symbol was associated. Error bars represent standard errors of the mean.

but a continued trend toward decreasing accuracy for
LWMs.!

To better understand this interaction between symbol
quantity and WM, we divided individuals into higher and
lower WM groups based on the upper and lower third of
the average WM-span scores. LWMs’ ordering accuracy
(as a function of increasing symbol magnitude) showed a
significant linear contrast effect [F(1, 15) = 13.97, p=.002]
but not a quadratic contrast effect (F< 1). HWMs showed
the reverse pattern - a significant quadratic effect
[F(1,16)=6.18, p=.024], and a marginal linear effect
[F(1,16) = 3.43, p=.093]. In other words, both LWMs and
HWMs showed a significant effect of symbol quantity
(i.e., accuracy significantly varied as function of symbol
quantity). However, this contrast was significant for LWMs
only when a linear function was assumed and, for HWMs,

! It is important to point out that the different levels of the factor symbol
are not, strictly speaking, independent of one another, which may lead one
to question the use of an ANCOVA to analyze these data, a method which
relies on the assumption of independent samples. First, one of the main
fears with respect to interrelatedness among observations, especially in a
repeated-measures ANOVA, is that this will result in inflation of the Type I
error rate (o). However, in the current case, even after correcting degrees of
freedom using the Greenhouse-Geisser estimate of sphericity (¢=.715),
both the main effect of symbol [F(3.6,175.1)=6.92, p<.001] and the
WM x symbol interaction [F(3.6,175.1) = 4.59, p =.002] remained signifi-
cant. Second, using the Mann-Whitney non-parametric test for differences
between two related groups (here we used our high and low WM groups),
we found a difference between groups for the numerically largest [symbol
VI: Z=-3.85, exact significance p =.002] but not the numerically smallest
symbol [symbol I: Z=-1.03, exact significance p=.763]. This finding
confirms our central hypothesis that increased reliance on an ordering
strategy with higher working memory should have the largest effect on
accuracy for the numerically largest symbol. Finally, it should be noted that
a very similar pattern of results was found for the global ordering task and
the greater-than comparison task. Comparing pairs in the latter task does
not carry the same dependence that the permutation-constrained
responses do in the global ordering task. Because the results for these
two tasks were highly similar, it seems unlikely that the effects reported in
the global ordering task arose due to the lack of complete independence
between levels.

reached significance only when a quadratic function was
assumed. These results are consistent with the hypothesis
that LWMs’ performance decreased as a function of numer-
ical size — with systematically worsening performance as
the quantity a symbol represented increased. HWMs’ per-
formance was best at the numerical endpoints (Fig. 3) - a
pattern of results consistent with a strategy that empha-
sized the symbols’ overall numerical order.

2.2.2. Novel symbols: comparison tasks

To assess WM differences in how participants repre-
sented the novel symbols in the comparison tasks, we per-
formed separate WM x 5 (comparison ratio: 1:2, 2:3, 3:4,
4:5, 5:6) ANCOVAs on accuracy (proportion correct) and
reaction time (RT) for correct trials. Analyses were limited
to the five contiguous symbol pairs (e.g., 1:2 or ‘first versus
second symbol’, 2:3 or ‘second versus third’ symbol, etc.)
because we were specifically interested in WM differences
at the ends of the ratio continuum (i.e., the largest — 1:2 -
and smallest - 5:6 - ratios). In addition, this allowed for a
constant numerical difference (or ‘distance’) of 9 at each
ratio.

Greater-than task. “Which symbol represents the greater
quantity?” In terms of accuracy, consistent with the global
ordering task analysis above, there was a significant main
effect of ratio [F(4, 196) = 3.49, p =.009], in which an over-
all decrease in accuracy was observed as the quantity a
symbol represented increased. In addition, the main effect
of WM reached significance [F(1, 49) = 9.81, p =.003], such
that WM capacity was positively related to performance
accuracy [r(49) =.408, p =.003]. There was also a signifi-
cant WM x ratio interaction [F(4, 196)=3.45, p=.009].
Although there was no significant relation between WM
and accuracy for the 1:2 ratio [r(49)=—.067, p=.642],
there was a strong positive relation between WM and
accuracy at the 5:6 [1(49) =.595, p <.001]. As in the global
ordering task above, this relationship was driven by an up-
turn in accuracy for HWMs at the highest symbols but a
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Accuracy (proportion correct) and reaction time (ms) data for novel numerical symbols. Data are reported in terms of WM group (upper/lower thirds). Cells:

Table 1

mean (SE).
(a) WM x ratio: greater-than comparison task (prop. correct)
Ratio 1:2 2:3
HWMs .882 (.028) 912 (.025)
LWMs .906 (.033) .677 (.092)
(b) WM x ratio: greater-than comparison task (RT)
Ratio 1:2 2:3
HWMs 1293 (84) 1508 (102)
LWMs 1406 (147) 1790 (158)
(c) WM x ratio: ascending comparison task (prop. correct)
Ratio 1:2 2:3
HWMs 931 (.032) 922 (.029)
LWMs .823 (.047) .656 (.067)
(d) WM x ratio: ascending comparison task (RT)
Ratio 1:2 2:3
HWMs 1443 (156) 1899 (167)
LWMs 1750 (159) 2219 (180)

3:4 4:5 5:6

.853 (.071) .716 (.089) .980 (.014)
.781 (.074) 792 (.077) .615 (.056)
3:4 4:5 5:6

1559 (115) 1552 (108) 1177 (48)
1624 (128) 1652 (140) 1401 (125)
3:4 4:5 5:6

.833 (.069) .755 (.081) .843 (.044)
.781 (.056) .688 (.071) .635 (.043)
3:4 4:5 5:6

1977 (153) 1941 (158) 1438 (75)
2179 (194) 2178 (189) 1875 (132)

continued trend toward decreasing accuracy for LWMs
(Table 1a).

If accuracy decreases as comparison ratio approaches 1,
this would be consistent with a direct association between
approximate dot-quantity and symbol. However, if
greater accuracy is seen for the symbol pairs involving
the numerically largest symbols (i.e., the ratio 5:6), this
would suggest participants used additional global-order
information that privileged representation of symbols at
the minimum and maximum edges of the set. Consistent
with this notion, and in keeping with results from the
global ordering task described above, when we divided
individuals based on their WM scores into bottom and top
one-thirds of the WM distribution, LWMs’ accuracy (as a
function of ratio) showed a marginally significant linear
contrast effect [F(1, 15) = 4.24, p =.057] but no significant
quadratic contrast effect (F < 1). HWMs showed the reverse
pattern, with a significant quadratic [F(1,16)=7.12,
p =.017] but non-significant linear (F < 1) contrast effect.

In terms of RT, the main effect of WM did not approach
significance (F < 1). However, the main effect of ratio was
significant [F(4,196)=3.75, p=.006]. The WM x ratio
interaction was marginally significant [F(4, 196) = 2.06,
p =.070]. As seen in Table 1b, RTs for both groups showed
an increase as ratio approached 1, and a drop in RTs at the
5:6 ratio. It should be noted, however, that this drop was
highly significant for HWMs [t(16)=4.03, p <.001] but
not LWMs [t(15)=1.89, p=.078]. This finding suggests
HWMSs’ accuracy increase reported above for the 5:6 ratio,
was not due to a speed-accuracy trade-off.

Ascending task. “Are the two symbols ascending or
descending?” In terms of accuracy, only the main effect
of WM reached significance [F(1,49)=16.55, p<.001].
There was a positive relation between WM capacity and
accuracy [1(49)=.502, p<.001]. A marginally significant
effect of ratio was also observed, in which an overall de-
crease in accuracy was observed as the quantity a symbol
represented increased [F(4, 196) = 2.22, p =.068]. In addi-
tion, despite the lack of a significant WM x ratio interac-
tion [F(4, 196) = 1.59, p =.180), Table 1c reveals an overall
pattern qualitatively similar to that seen for the greater-

than comparison and global ordering tasks. Specifically,
there was a decrease in accuracy for LWMs and an upturn
for HWMs at ratios closest to 1. In terms of RT, only the
main effect of ratio reached significance [F(4, 196) = 3.43,
p =.010]. For all other effects, F< 1 (see condition means
in Table 1d).

Thus, the data from the novel-symbol comparison tasks
mirrored the results of the global ordering task. Overall,
accuracy was highest for those with highest WM capacity.
Moreover, while accuracy did not differ as a function of
WM when comparing the numerically smallest symbols
(i.e., the 1:2 ratio), comparisons involving the numerically
largest symbols (5:6 ratio) yielded greater accuracy for
those higher in WM capacity. This finding is consistent
with the notion that HWMs are representing more than
just the quantities associated with specific symbols,
extending their representations of the novel symbols to in-
clude how they relate to each other in terms of overall
numerical order. As we will see below, participants’ strat-
egy reports lend additional support to this interpretation
of the data.

2.2.3. Strategy reports

Participants responded to two open-ended questions
regarding their symbol-learning strategies: (1) “During
training, how did you estimate the number of dots associ-
ated with each symbol? What strategies did you use?” (2)
“What strategies did you use to complete the [novel sym-
bol] comparison tasks?” For each question, if participants
explicitly reported using a rank or ordering based strategy,
then that question was scored as 1; otherwise, it was
scored as 0. Scores for the two questions were summed
to yield a range 0-2, with 0 indicating no report of ordering
strategy, and 2 indicating ordering was used during both
the learning and the comparison phases of the experiment.
Results showed that the higher one’s WM, the more likely
one was to adopt (or at least report having adopted) an ex-
plicit ordering strategy [r(49) = .385, p =.005] in acquiring
and using the novel numerical symbols. Note that if re-
sponses to Questions 1 (symbol learning) and 2 (symbol
comparison) were related separately to WM, the results



196 LM. Lyons, S.L. Beilock/Cognition 113 (2009) 189-204

do not change [Question 1: 1(49) =.340, p =.015; Question
2: 1(49) = .315, p=.024].

If improved performance for the numerically largest
symbols is indeed indicative of having made additional
ordinal inferences, then ordering strategy reports should
be related more specifically to better accuracy on the
numerically larger items than the numerically smallest
items. This was precisely what was found. Reported order-
ing strategy use was positively related to global-ordering
accuracy on symbol VI [1(49)=.354, p=.011] but not
symbol I [r(49) =.125, p =.381]. Similarly, for the greater-
than and ascending comparison tasks, a positive relation
was seen between ordering strategy and accuracy for the
5:6 [greater-than: 1(49)=.298, p=.034; ascending:
1(49) =.242, p=.087] but not the 1:2 comparison ratio
[greater-than: r(49)=-.031, p=.828; ascending: r(49)=
.008, p =.956].

2.2.4. Dot-array and Arabic numeral comparisons

Dot and Arabic numeral comparisons were examined
separately in a manner similar to the novel symbols above,
using WM x 5(ratio: 1:2, 2:3, 3:4, 4:5, 5:6) ANCOVAs.

Dot-comparisons. With respect to the greater-than com-
parison task, in terms of accuracy, only the main effect of
ratio reached significance [F(4, 196) = 9.66, p = .003]. Accu-
racy generally decreased as ratio approached 1 (Table 2a).
For RT, again only the main effect of ratio reached signifi-
cance [F(4,196)=14.96, p <.001], with RTs increasing as
ratio approached 1 (Table 2b).

Results for the ascending comparison task were similar
to the greater-than task. In terms of accuracy, only the
main effect of ratio reached significance [F(4, 196)=
30.29, p<.001], with accuracy decreasing as ratio ap-
proached 1 (Table 2c). In terms of RT, again only the main
effect of ratio reached significance [F(4,196)=26.88,
p<.001], with RTs increasing as ratio approached 1
(Table 2d).

Arabic numeral comparisons. With respect to the greater-
than comparison task, in terms of accuracy, no effect
reached significance (Table 3a). In terms of RT, the only
effect to reach significance was the main effect of WM
[F(1,49) =8.48, p =.005]: the higher one’s WM, the faster
one’s overall RT [1(49) = —.384, p =.005] (Table 3b).

Table 2

With respect to the ascending comparison task, in terms
of accuracy, no effect reached significance (Table 3c). In
terms of RT, there was a main effect of WM
[F(1,49) = 8.20, p =.006], such that the higher one’s WM,
the faster one’s overall RT [1(49) = —.379, p = .006]. The ef-
fect of ratio was also significant [F(4, 196) = 5.23, p =.001],
where RT increased as ratio approached 1 (Table 3d).

To summarize, dot-comparisons showed decrements in
performance (decreasing accuracy and increasing RTs) as
the ratio between numerosities approached 1. Crucially,
the magnitude of this effect did not depend on individual
differences in WM capacity. Comparisons involving Arabic
numerals showed a qualitatively similar effect of ratio on
performance. Moreover, as in the dot comparison, this
effect of ratio was not dependent upon differences in
participants’ WM capacity.

2.3. Discussion

We examined the impact of individual differences in
WM on numerical symbol-mapping and found that, over-
all, HWMs performed more accurately than LWMs. This
performance difference was greatest at the numerically
largest symbols, a pattern consistent with the view that
HWMs were going beyond simple symbol-quantity associ-
ations and generating hypotheses about the symbol-set’s
overall rank order. In contrast, LWMs did not appear to
place the additional emphasis on learning the symbols’
global order that was exhibited by HWMs; rather, LWMs
relied on simple symbol-quantity associations. Partici-
pants’ strategy reports support this interpretation. The
point at which a global-ordering strategy and a simple
‘approximate-and-associate’ strategy should yield diver-
gent performance (i.e., the numerically largest symbol) is
precisely the point at which explicitly reporting having
used an ordering strategy most strongly related to both
comparison and global-ordering accuracy.

Taken together, these data converge to support the view
that, when acquiring a set of novel numerical symbols,
HWMSs’ out-performance of LWMs is related to an added
emphasis on learning the symbols’ relative numerical order.
Moreover, these data indicate that a greater understanding
of symbols as an ordered set facilitates the numerical sym-

Accuracy (proportion correct) and reaction time (ms) data for dot-arrays. Data are reported in terms of WM group (upper/lower thirds). Cells: mean (SE).

(a) WM x ratio: greater-than comparison task (prop. correct)

Ratio 1:2 2:3
HWMs .990 (.010) .990 (.010)
LWMs .990 (.010) 969 (.017)
(b) WM x ratio: greater-than comparison task (RT)

Ratio 1:2 2:3
HWMs 585 (27) 670 (35)
LWMs 690 (42) 763 (41)
(c) WM x ratio: ascending comparison task (prop. correct)

Ratio 1:2 2:3
HWMs .941 (.020) .990 (.010)
LWMs .979 (.014) .948 (.020)
(d) WM x ratio: ascending comparison task (RT)

Ratio 1:2 2:3
HWMs 819 (46) 826 (58)
LWMs 900 (58) 972 (73)

3:4 4:5 5:6

.980 (.013) .863 (.029) .853 (.035)
.948 (.025) .842 (.036) .865 (.031)
3:4 4:5 5:6

721 (44) 781 (41) 773 (45)
755 (49) 780 (50) 818 (62)
3:4 4:5 5:6

961 (.018) .831 (.035) .760 (.035)
.873 (.029) .750 (.037) 729 (.052)
3:4 4:5 5:6

1007 (73) 1099 (75) 1185 (80)
1084 (74) 1127 (88) 1207 (78)
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Table 3

Accuracy (proportion correct) and reaction time (ms) data for Arabic numerals. Data are reported in terms of WM group (upper/lower thirds). Cells: mean (SE).

(a) WM x ratio: greater-than comparison task (prop. correct)

Ratio 1:2 2:3
HWMs 931 (.032) 951 (.019)
LWMs 969 (.017) .969 (.023)
(b) WM x ratio: greater-than comparison task (RT)

Ratio 1:2 2:3
HWMs 664 (28) 640 (27)
LWMs 753 (38) 750 (38)
(c) WM x ratio: ascending comparison task (prop. correct)

Ratio 1:2 2:3

HWMs 912 (.025) 971 (.016)
LWMs .885 (.062) .938 (.052)
(d) WM x ratio: ascending comparison task (RT)

Ratio 1:2 2:3

HWMs 760 (40) 782 (35)
LWMs 923 (57) 892 (59)

3:4 4:5 5:6

961 (.023) .945 (.034) .882 (.037)
969 (.017) 937 (.054) .927 (.050)
3:4 4:5 5:6

690 (26) 697 (27) 704 (23)
805 (31) 781 (42) 774 (32)
3:4 4:5 5:6

.863 (.036) 922 (.029) 912 (.029)
.896 (.043) .885 (.064) .875 (.058)
3:4 4:5 5:6

784 (42) 854 (31) 863 (28)
958 (44) 976 (55) 1040 (51)

bol-mapping process. In other words, the extent to which
relative order information is emphasized in symbolic
numerical representations may impact the success with
which these symbols are acquired in the first place.

Importantly, performance on comparison tasks involv-
ing neither dot-arrays nor Arabic numerals yielded an
interaction between WM and comparison ratio. This sug-
gests that the differences seen in acquisition stages (i.e.,
in the novel-symbol data) are not due to WM-related dif-
ferences in the precision with which symbolic and non-
symbolic quantities are represented per se. In addition, it
is not the case that individuals lower in WM will never
understand relative order information in numerical sym-
bols. Rather, our results indicate that, during the initial sym-
bol-quantity mapping process, LWMs are not as predisposed
as their HWM counterparts to learn ordinal information.

It should be noted, however, that higher WM was re-
lated to faster response times in the Arabic numeral com-
parison tasks. On the one hand, this may simply be due
to WM-related differences in general processing speed
(see Engle, Tuholski, Laughlin, & Conway, 1999; Verhaeg-
hen & Salthouse, 1997). On the other hand, HWMs may re-
tain an important overall edge over LWMs when
processing specifically numerical symbols. It is possible
that the early inclination for HWMs to emphasize relative
order information when mapping quantities to symbols
may lead to a greater emphasis on ordered, relational
numerical processes in overlearned Arabic numerals. That
is, HWMs may have quicker access to ordinal information
in overlearned numerical symbols in general. Thus, the
facts ‘54 comes after 45’ and ‘9O comes before 18’ would
both be accessed more rapidly by HWMs than LWMs be-
cause of this more efficient processing of relative numeri-
cal order. As a result, for overlearned numerical formats
such as Arabic numerals, higher WM capacity should be re-
lated to faster symbolic numerical comparisons, regardless
of ratio.

Of course, it is impossible to distinguish between the
above two alternatives in Experiment 1, given that Arabic
numeral comparisons represent one of the simplest
numerical tasks one can perform with numerical symbols.
In Experiment 2, however, participants performed an Ara-
bic numeral task that involved a more explicit ordering

component. In this way, we hoped to better assess whether
individual differences in WM translate into differences in
the efficiency with which ordinal information about well-
learned Arabic numerals is accessed.

Finally, it is worth discussing a potential alternative
explanation for why HWMs showed an accuracy increase
at the numerically largest symbol. The symbols at the end-
points have competing associations in only one numerical
direction, whereas the remaining 4 symbols are situated
with symbol-quantity associations in both numerical direc-
tions (larger and smaller). In this way, one need not invoke
ordinal inference on the part of HWMs to produce the
U-shaped accuracy function displayed by this group. Rather,
fewer competing associations at the endpoints may have
lead to greater accuracy in retrieving the quantity associa-
tions for the smallest and largest symbols. However, if this
were the case, one would expect LWMs to show a U-shape
similar to that seen in HWMs, because LWMs’ accuracy
should also be boosted by less competing associations - in-
deed possibly more so than HWMSs'. Given that our data do
not reflect this, one might further push a strictly associa-
tion-based account by postulating that LWMs’ performance
at the highest symbol was compromised by greater numer-
ical overlap with neighboring symbols than the lowest sym-
bol, as already described in our original hypothesis. Yet, it
seems difficult to imagine why the purported impact of such
representational overlap would be so much greater for
LWMs than HWMs (our HWM group was perfect - 100%
accuracy - whereas LWMs were barely above chance on
the numerically largest symbol) without invoking another
mechanism altogether. As already discussed, the most plau-
sible mechanism in our minds is that HWMs adopted an or-
der-based strategy and went on to infer that the asymmetry
in competing associations for the numerically largest sym-
bol means that it is the numerically largest symbol. Indeed,
our strategy report data (explicit reports of using an order-
or rank-based strategy) correlated both with WMC and per-
formance on the numerically largest symbol, which lends
empirical support to the notion that HWMs tended to go be-
yond symbol-quantity associations and infer and encode
more complex symbol-symbol ordinal associations. Finally,
as we shall see in Experiment 2 (which does not rely on any
sort of training or learning mechanism within the experi-
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ment itself), the hypothesized tendency for HWMs to invoke
more complex ordinal processing in numerical symbols ex-
tends to highly overlearned Arabic numerals as well.

3. Experiment 2

In Experiment 2, we turned to a second context to
examine the question of how individual differences in
WM shape one’s ordinal understanding of numerical sym-
bols. Namely, we examined this relationship using a task in
which participants were explicitly asked to make order-re-
lated judgments about highly enculturated numerical sym-
bols (Arabic numerals). To this end, a three-number
ordering task was devised. Participants saw three one-digit
Arabic numerals and were asked to judge whether all three
numbers were in increasing order (from left to right). Not
only does completing this type of task require accessing
more ordinal information than the two-number compari-
son task used in Experiment 1, but a three-number task
also allows for the manipulation of the accessibility of or-
der information in terms of patterned relationships be-
tween the three digits. This enables us to directly test
whether HWMs are accessing a richer set of ordinal associ-
ations than LWMs when processing overlearned symbolic
numbers.

If only two digits are used (as with the comparison tasks
used in Experiment 1), the question ‘Are these digits in
increasing order?’ can easily be reduced to a simple magni-
tude comparison task. Using three digits makes this reduc-
tion more difficult because one must check the results of
any pairwise comparisons against a rule that tells one
whether all are in order or not. For example, in the case
of {1, 2, 3}, one may compare 1 to 2, and then 2 to 3, but
to answer the question, ‘Are these digits in increasing or-
der?’ one needs to perform an additional operation. One
could explicitly compare 1 to 2, 2 to 3, and 1 to 3, and then
check this against the rule that if the right digit is greater in
all three cases then the answer is always ‘yes’; or one could
skip the last comparison via explicit transitive inference
(2>1,3>2->3>1 - ‘yes’). In all cases, one must check
that the results of these comparisons are themselves prop-
erly ordered. In this way, we believe this task draws more
heavily on representations of relative order information
than a simple magnitude comparison task.

That said, a more efficient way of solving these prob-
lems would be to compare stimuli via direct retrieval to
known ordered instances from memory. We hypothesized
that HWMs have a richer set of such instances - perhaps as
a result of being more inclined to have inferred and en-
coded such instances in the first place, as indicated by
Experiment 1. To test this hypothesis, we asked partici-
pants to tell us whether sequences of three numbers were
in increasing order (from left to right) and looked at their
success in doing this (1) as a function of individual differ-
ences in WM, and (2) as a function of the type of relation-
ship between the three numbers.

We assumed that a sequential pattern, such as {1, 2, 3}
would contain strong ordinal associations between the
sequential numbers (i.e., 1 to 2 and 2 to 3). This assump-
tion is supported by recent evidence showing that partici-
pants are faster to compare two Arabic numerals when

they are separated by a numerical distance of 1 than when
this distance is greater than 1 (Turconi et al., 2006). This is
a reversal of the standard distance effect in which one typ-
ically finds that the larger the numerical distance between
compared numbers, the faster and more accurately one
tends to respond (e.g., Moyer & Landauer, 1967). Impor-
tantly, reversal of the distance effect is seen only when
the two numbers are in left-right increasing order (e.g.,
7-8, and not 8-7; Turconi et al., 2006), perhaps due to in-
creased experience with sequential digits given frequent
repetition of the integer count sequence (Gallistel & Gel-
man, 1992). In other words, numerical symbols are
strongly ordinal in their representations, but asymmetri-
cally so.

In terms of the current paradigm, this means that pre-
sentation of the sequential numbers {1, 2, 3} should lead
to automatic activation of the ordinal relationship between
the numbers in this set, biasing initial responses to be ‘yes,
this set is in order’, even when stimuli may not be. In this
way, participants should be much faster in saying that {1,
2, 3} is in order compared to saying that {2, 1, 3} is not
in order. We hypothesized that this difference would hold
regardless of WM because, by adulthood, all participants
should be highly familiar with the integer count sequence.
In other words, subtracting faster ‘yes’ from slower ‘no’ RTs
should yield a large positive value, the magnitude of which
should not depend on WM capacity.

By contrast, we hypothesized that a numerically skewed
set such as {1, 6, 8} should contain far weaker ordinal asso-
ciations between constituent numbers, as it is not part of
the canonical count sequence. Thus, the difference be-
tween saying ‘no’ {6, 1, 8} is not in order and ‘yes’ {1, 6,
8} is in order should be far less than the ‘no’ minus ‘yes’ dif-
ference for the sequential stimuli {1, 2, 3}. In this way, the
weak ordinal associations in skewed trials should lead to
minimal differences between ‘no’ and ‘yes’ responses,
regardless of WM capacity.

Crucially, given that in Experiment 1 we found evidence
that HWMs are more likely to go beyond simple associa-
tions and infer more complex ordinal relationships in sym-
bolic numerical stimuli, we hypothesized that a third type
of ordered set might fall somewhere in between these two
extremes. Arithmetically balanced patterns (i.e., where the
arithmetic mean equals the median) such as {2, 4, 6} or {3,
6, 9}, though perhaps not as obviously ordered as sequen-
tial numbers (e.g., Jou, 2003, Experiment 2), might none-
theless contain ordinal associations stronger than those
in skewed sets. This might be due to familiarity with
odd/even counting routines or the fact that interval-widths
are of constant (i.e., linear) magnitude.

With respect to individual differences in WM capacity,
then, we hypothesized that only HWMSs’ richer set of ordi-
nal associations would lead to a bias in seeing balanced
sets as in order. As a result, HWMs should show a positive
difference for ‘no’ minus ‘yes’ balanced trials that LWMs do
not. To state this last prediction about balanced trials
another way, although highly routinized procedures like
the integer count sequence may bias everyone to ‘see’
sequential sets of symbolic numbers as in order, a deeper
bias to process symbolic numbers ordinally may vary with
individual differences in WM capacity, such that HWMs
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Fig. 4. Experiment 2 ordering task: example trial. Stimuli were presented for a maximum of 1500 ms. If participants responded before this time limit, the
sequence immediately moved to the inter-stimulus-interval (ISI); otherwise, stimuli disappeared after 1500 ms, leaving a blank screen, which remained

until subjects responded.

are more likely to show such a bias when assessing order
information in balanced sets.

The above result would be consistent with the central
finding in Experiment 1, namely that those higher in WM
are more likely to go beyond immediate associations and in-
fer less obvious ordinal relations in symbolic numerical
stimuli. In Experiment 2, we look for evidence in Arabic
numerals that, beyond simple associations between sequen-
tial numbers, HWMs have established strong ordinal associ-
ations between non-sequential numerical patterns as well.
Such a result would provide important evidence that WM-
related differences in numerical symbol acquisition, if left
unchecked, may have implications for more complex ordinal
processing in well-learned symbolic mathematics.

3.1. Methods

3.1.1. Participants

Participants (N = 30; 17 female) were University of Chi-
cago students (age: 18-31years; M=21.3 years) drawn
from the same population as the first experiment. As in
Experiment 1, individual differences in WM were deter-
mined by the average score on the aO- and aR-span tasks.
These measures were highly correlated [r(28)=.539,
p =.002]. As in Experiment 1, WM was primarily analyzed
as a continuous measure; however, data are also presented
in terms of high and low WM groups (HWMs: n =10,
M =64.30, SE=1.32, Ty=56; LWMs: n=10, M=25.00,
SE=3.21, T, =32).

3.1.2. Procedure

In a single testing session, participants completed 3 tasks
in total: aO-span, aR-span and the ordering task. All partici-
pants performed the three tasks in this order, with the
exception that the order of the two span tasks was counter-
balanced across participants. For all tasks, stimuli were dis-
played at 1280 x 1024-resolution on a 19.1” Dell flat-panel
monitor approximately 1 meter from the participant.

Ordering task. On each trial, participants saw three, 1-di-
git Arabic numerals (range: 1-9) arranged horizontally.
Stimuli were in white 24-point Courier font presented on
a black background. The distance between the left and
rightmost numerals subtended to approximately 6° of
visual angle. Numerals were separated from one another
by ~1.5° of visual angle.

Participants’ task was to indicate whether all three
numerals were in increasing order from left to right. If all
three digits were in increasing order, participants were to
press the ‘Z' key on a standard keyboard with their left

hand. Otherwise (if any two numeral pairs were in
decreasing order from left to right), participants were to
press the ‘M’ key with their right hand.

For each trial, the three one-digit Arabic numerals were
presented on the screen for a maximum of 1500 ms. If par-
ticipants had not responded by this time, the screen went
blank until they did. Whenever a response was detected,
three white vertical pipes appeared on the screen for a
fixed inter-stimulus interval of 1500 ms. An example trial
is shown in Fig. 4.

Three stimulus types were used: sequential, balanced
and skewed. Sequential stimuli, when properly ordered
(i.e., on ‘yes’ trials), formed a three-digit segment of the
integer count sequence - e.g., {1, 2, 3}, {3, 4, 5}, {7, 8, 9}.
Balanced stimuli, when properly ordered, formed a pattern
with constant intervals between adjacent numbers. An-
other way to think about balanced trials is that they were
comprised of non-sequential sets where the median and
mean numbers were equal - e.g,, {2, 4, 6}, {3, 6, 9}, {1, 5,
9}. Skewed stimuli, when properly ordered, formed a pat-
tern with unequal intervals between adjacent numbers.
In other words, the median and mean of skewed sets were
never equal - e.g., {1, 6, 8}, {4, 8, 9}, {1, 2, 7}. For each sub-
ject, skewed sequences were randomly drawn from the set
of all possible skewed sequences. In the case of ordered
(‘yes’) stimuli, there are 68 possible skewed combinations.
Each participant saw 4 of these during practice and the
remaining 64 during the main experiment. The set of 4
used in practice was selected randomly for each partici-
pant. The results of this random selection did not co-vary
with working memory capacity. Examples of each condi-
tion for both ‘yes’ and ‘no’ trials are provided in Table 4.

When only ‘yes’ trials are considered for digits 1-9,
there are 7 possible sequential combinations (see Table

Table 4

Example stimuli for the Experiment 2 ordering task: examples are provided
for each condition and each (correct) response type (i.e., ‘Yes, in order’ and
‘No, not in order").

Sequential Balanced Skewed
Yes No Yes No Yes No
123 213 135 513 128 182
234 423 246 426 169 619
345 534 357 375 267 726
456 465 468 684 289 892
567 657 579 597 358 583
678 867 147 417 367 376
789 798 258 825 479 947
369 693 568 586
159 195 679 769
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Experiment 2: Ordering Task
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Fig. 5. This figure depicts cell means for RT data in the Experiment 2 ordering task. Means represent average yes-trial RTs subtracted from average no-trial
RTs for each condition. Example stimuli (1 for each response type) are provided for each condition (see also Table 4 for additional examples). Error bars

represent standard errors of the mean.

4). Each combination was repeated 4 times (total of 28 ‘yes’
responses). There were also 28 ‘no’ trials for the sequential
condition. Note that ‘no’ trials did not repeat: for each set
[e.g., {1, 2, 3}], four mixed-order combinations are possible
|excluding the all-decreasing case: {1, 3, 2}, {2, 1, 3}, {2, 3,
1}, {3, 1, 2}]. There were 9 possible balanced combinations
(Table 4). Again each combination was repeated 4 times
(total of 36 ‘yes’ and 36 non-repeating ‘no’ trials). Because
an overall null effect was predicted for skewed stimuli (for
the difference between ‘yes’ and ‘no’ trials, as well as across
individual differences in WM), a greater number of skewed
trials was used: 64 ‘yes’ and 64 ‘no’ non-repeating trials.

Participants began by performing 12 practice trials to
familiarize themselves with the task. They then moved
on to the main experiment where they performed 4 blocks
of 64 trials each, with a short break in between each block.
Each block contained 14 sequential, 18 balanced, and 32
skewed trials. An equal number of ‘yes’ and ‘no’ trials were
included for each stimulus type in each block.

3.2. Results

We began by calculating difference scores for each par-
ticipant for each stimulus type. For RTs, this was done by
subtracting a participant’s average response time for ‘yes’
trials from ‘no’ trials for that stimulus type (incorrect trials
were excluded from the RT analysis). Thus, three difference
scores were calculated for each participant. These differ-
ence scores were then entered into a WM x 3(type:
sequential, balanced, skewed) ANCOVA, with WM as a be-
tween-subjects continuous factor and type as a within-
subjects discrete factor.

With respect to RT, the main effect of WM was not sig-
nificant [F(1, 28) = 1.26, p = .272]. In other words, the over-
all tendency to respond faster on ‘yes’ than ‘no’ trials did
not vary as a function of WM capacity. However, there
was a significant main effect of type [F(2,56)=30.21,
p <.001]. Sequential trials showed a large positive differ-

ence between ‘no’ and ‘yes’ trials [M =198 ms, SE =15;
one-sample, two-tailed t-test against 0 ms: t(29)=13.31,
p <.001]. Balanced trials showed a smaller but still signifi-
cant effect of response [M =43 ms, SE=16; t(29)=2.68,
p=.012]. Skewed trials showed no difference overall be-
tween yes and no trials [M =8 ms, SE=12; t(29)=.63,
p =.532].2 Crucially, this pattern depended on WM capacity
[WM x type interaction: F(2,27) = 9.40, p <.001]. There was
a strong positive correlation between WM and difference
scores in the balanced condition [r(28) =.542, p =.002] but
not between WM and difference scores in the other two con-
ditions [sequential: 1r(28)=-.049, p=.798; skewed:
1(28) = —.056, p=.771]. Cell means are depicted in terms
of WM groups in Fig. 5.

To verify the hypothesized order-related differences be-
tween our chosen stimulus types and to further under-
stand the specificity of the stimulus types’ relation with
WU, it is useful to consider the data in terms of raw yes
and no RT scores (see Table 5).2 If we take sequential trials
as the extreme case where order information is strongly rep-
resented and skewed trials as the opposite extreme where
order information is largely absent from participants’ repre-
sentations, then we would expect participants to be much
faster to verify that sequential stimuli are in order relative
to skewed stimuli. Conversely, we would expect participants
to be far slower to correctly reject a sequential set that is out
of order relative to an unordered skewed set. This is pre-
cisely what we found. Across participants, there was a sig-
nificant difference in RTs between sequential and skewed

2 The lack of response bias for Skewed stimuli serves as an important
manipulation check. The ordering task employed here does not inevitably
lead to a kind of confirmation bias, such that yes trials are always faster
than no trials. Only when one is sensitive to inherent order information in
the stimulus set is one faster to confirm that numbers are in the correct
order.

3 If, rather than using difference scores, Yes and No responses are treated
as two levels of an additional factor Response, the crucial three-way
interaction (WM x type x response) is equivalent to the two-way
(WM x type) interaction already described. See also Table 5 for cell means.
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Table 5

Response times (correct trials only) for Experiment 2. Means are given for
‘yes’ and ‘no’ trials separately. WM groups represent upper/lower thirds.
Cells: mean (SE).

Table 6

Error rates (proportion incorrect) for Experiment 2. Means are given for
‘yes’ and ‘no’ trials separately. WM groups represent upper/lower thirds.
Cells: mean (SE).

Sequential Balanced Skewed

Experiment 2: ordering task (response times)
HWMs

No 1057 (48) 981 (40) 955 (40)

Yes 861 (34) 892 (13) 945 (33)
LWMs

No 1131 (57) 1015 (48) 1028 (50)

Yes 936 (45) 1010 (51) 1021 (47)

Sequential Balanced Skewed

Experiment 2: ordering task (prop. incorrect)
HWMs

No 129 (.032) .073 (.025) .047 (.017)

Yes .009 (.018) .028 (.012) .052 (.016)
LWMs

No 139 (.022) .037 (.011) .048 (.008)

Yes .014 (.008) .034 (.011) .040 (.007)

conditions both when stimuli were correctly ordered [‘yes’
trials: t(29)=-8.89, p<.001] and were not correctly or-
dered [‘no’ trials: t(29) = 13.31, p <.001]. Crucially, this dif-
ference was in opposite directions for the two trial types
(note the sign-change of the two t-statistics). For neither re-
sponse type was this difference (sequential RTs-skewed
RTs) related to WM capacity [‘yes’ trials: r(28)=—.132,
p =.487; ‘no’ trials: r(28)=.030, p =.876].

We hypothesized that balanced stimuli should fall
somewhere in between these two extreme cases, but only
for those higher in WM capacity. That is, the higher one’s
WM, the more likely one should be to solve balanced prob-
lems by retrieving ordered representations of these stimuli
(i.e., more like sequential stimuli). Those lower in WM, by
contrast, should solve balanced trials more as though they
were skewed trials. To test this, we looked at the difference
between balanced and skewed RTs (balanced RTs-skewed
RTs). If we are correct, this difference should be negatively
related to WM for yes (ordered) trials (higher WM is re-
lated to a larger negative difference), and positively related
to WM for no (non-ordered) trials (higher WM is related to
a larger positive difference). This is exactly what we found
[‘yes’ trials: 1(28) = —.411, p =.024; ‘no’ trials: 1(28) = .429,
p =.018].# In short, HWMs appeared to respond to balanced
trials more like sequential stimuli, and LWMs appeared to
respond to balanced trials more like skewed stimuli. This
finding is consistent with our central hypothesis that higher
WM capacity is related to more complex representations of
order information in symbolic numerical stimuli.

It is important to point out that ‘yes’ stimuli were re-
peated in the sequential and balanced conditions (1 in-
stance of each stimulus per block) because of the limited
number of possible stimulus combinations. This was not
the case in the skewed condition. To assess whether stim-
ulus repetition may have played a role in generating the re-
sults reported above, a WM x 3(type: sequential, balanced,
skewed) x 4(block: 1, 2, 3, 4) ANCOVA was run. There were
no main effects or interactions involving block [all
ps>.17].

For response accuracy, data were analyzed as error rates
(proportion incorrect). This was done for ease of interpre-
tation, such that, after subtracting ‘yes’ error rates from
‘no’ error rates, response curves should be qualitatively

4 Results point to the same conclusions if one considers the relation
between Balanced and Sequential RTs rather than Balanced and Skewed
RTs.

similar to those in the RT analysis (i.e., with larger positive
values for conditions where greater ordinal bias is present).
As with the RT analysis, difference scores were entered into
a WM x 3(type: sequential, balanced, skewed) ANCOVA.
The main effect of WM did not reach significance (F<1).
As with the RT data, the main effect of type was significant
[F(2,56)=6.37, p=.003], such that the sequential trials
showed a large positive difference between ‘no’ and ‘yes’
trials (M =.119, SE =.013; t(29)=7.73, p <.001), balanced
trials less so (M=.023, SE=.008; t(29)=2.84, p=.008),
and skewed trials showed no difference overall (M =.008,
SE=.008; t(29)=0.99, p=.328). Though the WM x type
interaction did not reach significance [F(2,56)=2.43,
p=.118], a comparison of Tables 5 and 6 reveals that the
overall pattern of results was similar to that seen for the
RT data. There was a trend toward a positive correlation
between WM and difference scores for the balanced stim-
uli [r(28) =.270, p = .148] but not between WM and differ-
ence scores for the other stimulus types [sequential:
r(28)=.082, p =.667; skewed: r(28) = —.099, p =.603]. Gi-
ven the similar patterns seen in the RT and accuracy data,
results are unlikely to have been driven by a speed-accu-
racy trade-off.

3.3. Discussion

In Experiment 2, we hypothesized that the tendency
seen in Experiment 1 for HWM s to go beyond simple asso-
ciations and infer relative order information when acquir-
ing novel numerical symbols should extend to deeper
ordinal understanding in overlearned Arabic numerals.
We found a bias in all participants to indicate sets of
sequential numerals were in order, even when some of
the numeral pairs were not (sequential stimuli). Thus, even
LWMs do appear to establish strong ordinal associations, at
least for stimuli in which those associations are directly re-
lated to an overlearned count sequence. This is consistent
with our interpretation of the dot-array and Arabic numer-
al comparison data from Experiment 1 (Tables 2 and 3):
higher WM capacity does not appear to be necessary for
learning to emphasize ordinal associations in numerical
stimuli per se.

Crucially, however, when ordinal relations between
stimuli were patterned but less immediately obvious (bal-
anced stimuli), only HWMs were faster and more accurate
at recognizing balanced sets were in order relative to
skewed sets. This latter result is also consistent with the
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data from Experiment 1: the tendency to go beyond simple
direct associations and infer deeper relative ordinal rela-
tionships between symbolic numerical stimuli depends
on individual differences in WM capacity. That is, perhaps
due to the tendency to adopt more demanding, cognitively
complex learning strategies (Beilock & Decaro, 2007; De
Neys, 2006; Decaro et al., 2008, 2009; Evans, 2003;
Stanovich & West, 2000), HWMs are more likely to infer
(Experiment 1) and retrieve (Experiment 2) more complex
ordinal associations between symbolic numbers.

It should be noted that previous work has shown a
tendency for HWMs to be more efficient at inhibiting un-
wanted associations (Conway & Engle, 1994). Thus, it
may be that HWM s are more efficient than LWMs at inhib-
iting the ordinal associations between digits on ‘no’ trials.
If this were the case, it would suggest that, if anything,
we are underestimating the emphasis that HWMs place
on ordinal information. This is because, if LWMs were
not able to exercise inhibitory control to the same extent
as HWMs, this would presumably result in a slowdown
of LWMSs' ‘no’ responses, thereby exacerbating the differ-
ence between ‘no’ minus ‘yes’ trials in all conditions. In this
way, an inhibitory advantage for HWMs would simply
work against our ability to detect a positive relation be-
tween WM capacity and difference scores for the balanced
stimuli (imagine the balanced condition becoming more
positive for LWMs - i.e., closer to HWM s - in Fig. 5). More-
over, whether LWMs struggle more so than HWMs with
inhibiting automatic ordinal associations in the balanced
condition may be irrelevant for interpreting LWMs’
performance because LWMs appear to have weak ordinal
associations in the context of balanced stimuli to begin
with (indeed in the current data, the LWM split showed
no such bias at all - Fig. 5).

To summarize, the data from Experiment 2 are consis-
tent with Experiment 1 in showing that WM capacity is
strongly related to a greater tendency to process symbolic
numerical stimuli in terms of deeper ordinal relationships.
Experiment 2 also expands upon Experiment 1 in showing
that this tendency applies not only to the nature of infer-
ences made in a symbol-learning context, but extends to
explicit judgments made about complex ordinal relations
in overlearned Arabic numerals as well.

4. General discussion

In two experiments we show that individual differences
in WM capacity predict participants’ predisposition to go
beyond simple, direct associations and infer deeper ordinal
relationships among symbolic numerical stimuli. In our
first experiment, we show that this tendency allows for
more accurate mapping of numerical content onto novel
symbols. Experiment 2 reveals that this tendency extends
to HWMSs’ sensitivity to more complex order information
in overlearned symbolic stimuli (Arabic numerals). Be-
cause complex mathematical process often rely strongly
on symbolic representations, understanding individual dif-
ferences in how order information is represented may
yield important insight into why HWMs typically outper-
form LWMs on a wide range of numerical tasks (e.g., Ash-
craft & Krause, 2007).

In Experiment 1, we set out to examine whether higher
WM capacity would facilitate more complex inferences
about how numerical symbols were ordinally related to
one another. In doing so, we simulated the process of map-
ping symbols onto approximate (pre-verbal) quantities
that has been postulated by several prominent models of
symbolic number representation (Dehaene & Changeaux,
1993; Gelman & Gallistel, 1978; Verguts & Fias, 2004). To
this effect, the data from Experiment 1 may extend our
understanding of this hypothesized mapping process in
two important ways. First, we show that individual differ-
ences in a domain-general cognitive capacity — working
memory - play an important role in determining partici-
pants’ success in using these newly acquired symbols in
a series of simple numerical tasks (i.e., higher WM was
positively related to greater accuracy across the compari-
son and global ordering tasks). Second, we show that this
advantage is due at least in part to HWMs’ tendency to
go beyond direct symbol-quantity associations and infer
ordinal associations between the symbols themselves.
We thus provide evidence that both domain-general cogni-
tive processes and relative order information play key roles
in determining successful numerical symbol-mapping.

The view that WM plays an important role in symbol-
mapping is consistent with neural evidence showing
involvement of prefrontal cortical structures in mapping
quantity information onto abstract symbols, both at the
neuronal level in monkeys (Diester & Nieder, 2007) and
in terms of neuroimaging data in humans (Lyons & Ansari,
2009). Importantly, however, prefrontal activity does not
by itself imply involvement of WM-related processes. By
directly assessing the role of individual differences in
WM capacity in the numerical symbol-mapping process,
the current work serves as an important bridge between
neural and behavioral evidence by showing that WM does
indeed play a central role in numerical symbol-mapping.
This implies that a comprehensive account of numerical
symbol acquisition requires an understanding of the inter-
action between models of working memory and symbolic
numerical representation.

A potentially interesting question is whether our results
generalize to any set of inherently ordered stimuli (light
wavelength, luminance, sound pitch, etc.). In our view, the
results of Experiment 1 - that individual differences in
WM shape the strategies individuals use to learn stimuli
and the relations among these stimuli - is potentially wide
ranging. Support for this idea comes from our dot-compari-
son data, where high and low WMs did not differ in their
ability to discriminate non-symbolic quantities - that is,
the impetus to emphasize order information seems strat-
egy-based, and is not due to anything inherent to the stimuli
themselves. In that sense, we would have no problem if
using non-enumerable stimuli (such as luminosity) showed
the same pattern of results, since both continuous and
discrete magnitudes can be placed on a single axis that
implies order. In the current study, we chose stimuli with
enumerable magnitudes because learning the meaning of
symbolic numbers is an important case where inferring
relative order appears to be an important step in moving
beyond simple symbol-magnitude associations - a step that
might be advantageous for mathematics learning in general.
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The fact that higher WM predicted better acquisition of
ordinal relationships among symbols due (at least in part)
to differences in strategy use may signal a point of peda-
gogical intervention. That is, if all individuals, regardless
of WM capacity, are made explicitly aware of the impor-
tance of emphasizing order information in numerical sym-
bols, LWMs may acquire numerical symbol-mappings as
rapidly and accurately as HWMs. Similarly, the current re-
search may inform developmental theories of numerical
symbol acquisition by suggesting that inference of relative
order information is an important component of this pro-
cess (see also Lyons & Ansari, 2009; Tzelgov et al., 2000).
However, we must urge strong caution in drawing too
close an analogy between the training method we em-
ployed in Experiment 1 using adult participants and the
developmental processes by which children actually map
symbols onto numerical quantities. Nevertheless, recent
work by Booth and Siegler (2008) has shown that increas-
ing linearity in children’s numerical estimates can lead to
improvements in arithmetic ability. One possibility is that
development of a linear representation of numerical mag-
nitudes is facilitated by greater understanding of ordinal
relations that bind the number line together (see Opfer &
Siegler, 2007, for a similar suggestion). In this way, it
seems reasonable to speculate that explicit instruction in
strategies that emphasize associations between numerical
symbols might facilitate linear reshaping of numerical rep-
resentations in general.

Due to the novel and artificial nature of the training
stimuli used in Experiment 1, it is important to show that
WM relates to differences in numerical order processing in
highly familiar stimuli that are of direct ecological rele-
vance to participants. In Experiment 2, we found that only
those higher in WM capacity showed a response bias for
balanced stimuli. Our interpretation of these data is that
the tendency to go beyond simple associations and infer
more complex ordinal relationships (as was seen in Exper-
iment 1) is something that applies to highly enculturated
numbers as well. [f HWMs are more likely to notice ordinal
relationships, they may be more likely to encode these
associations. Repeated encoding in this manner in turn
may lead to more efficient recognition of these ordinal
relationships. Though such an account is admittedly a
speculative one at present, further work may elucidate
the role that WM and understanding ordinal associations
play in developing a full complement of symbolic numeri-
cal skills.

Interestingly, we found that all subjects, regardless of
WM capacity, were biased to see sequential sets of numer-
als as in order, even when one or more numerals pairs was
in fact switched. This finding is consistent with the view
that direct ordinal associations between adjacent symbolic
integers are indeed a central component of symbolic
numerical representations. However, the lack of response
bias for skewed trials across all participants suggests that,
even for HWMs, there is a limit to the ordinal associations
that are readily accessible. This suggests it is not the case
that ordinal relations in all possible three-item combina-
tions (at least for the numerals 1-9) are automatically ac-
cessed, even for overlearned numerical symbols in literate
adults (see Tzelgov & Ganor-Stern, 2004, for related discus-

sion). Instead, we found evidence for this sort of retrieval-
based access to order information only in sequential stim-
uli (for all participants) and balanced stimuli for HWMs in
particular.

In conclusion, we suggest a new and potentially impor-
tant source of individual variability in processing symbolic
numbers: the interaction between ordinal processing and
working memory capacity. In two different contexts, we
provide evidence that WM plays a critical role in process-
ing order information in numerical symbols: those higher
in WM are more likely to go beyond the actual quantity a
symbol represents and focus on the symbol’s relative
numerical order — a fact that generalizes to include effi-
cient retrieval of more complex ordinal relationships
among Arabic numerals. In short, WM differences are an
important component of symbolic numerical processing,
especially when the relative numerical order of stimuli is
relevant to the task at hand. An important next step - al-
beit outside the purview of the current paper - would be
to examine whether differences in ordinal processing of
symbolic numbers may serve as a yet untapped source of
predicting mathematical skills. Because complex mathe-
matical process often rely strongly on symbolic represen-
tations as well as working memory (e.g., Ashcraft &
Krause, 2007), understanding such individual differences
may provide important insight into how and why some ex-
cel in mathematics while others struggle. Thus, our find-
ings may set the stage for a new line of research aimed
at understanding the interplay between ordinal processing,
working memory, and numeracy.
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