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Abstract
The last several years have seen steady growth in research on the cognitive and neuronal mech-

anisms underlying how numbers are represented as part of ordered sequences. In the present

review, we synthesize what is currently known about numerical ordinality from behavioral and

neuroimaging research, point out major gaps in our current knowledge, and propose several

hypotheses that may bear further investigation. Evidence suggests that how we process ordin-

ality differs from how we process cardinality, but that this difference depends strongly on

context—in particular, whether numbers are presented symbolically or nonsymbolically. Re-

sults also reveal many commonalities between numerical and nonnumerical ordinal proces-

sing; however, the degree to which numerical ordinality can be reduced to domain-general

mechanisms remains unclear. One proposal is that numerical ordinality relies upon more gen-

eral short-term memory mechanisms as well as more numerically specific long-term memory

representations. It is also evident that numerical ordinality is highly multifaceted, with sym-

bolic representations in particular allowing for a wide range of different types of ordinal re-

lations, the complexity of which appears to increase over development. We examine the

proposal that these relations may form the basis of a richer set of associations that may prove

crucial to the emergence of more complex math abilities and concepts. In sum, ordinality ap-

pears to be an important and relatively understudied facet of numerical cognition that presents

substantial opportunities for new and ground-breaking research.
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1 GENERAL INTRODUCTION
The last few decades have seen remarkable growth in efforts to better understand

how the human mind and brain process numbers and numerical information. When

one mentions “numbers,” most literate individuals tend to think of number symbols–
number words (“one,” “two,” “three,” …) or their corresponding written symbols

(often, Indo-Arabic numerals, 1, 2, 3, …). There is also substantial evidence that

humans and many other species can represent nonverbal quantities or magnitudes.

For instance, without explicitly counting, one can estimate approximately which

of two bushes contains more berries, or which of two tribes contains more members

(Dehaene, 1997). This amount or quantity is a property of a set of objects and is typ-

ically referred to as cardinality. Cardinality is the answer to the question, “How

many?” One can answer the question approximately, as in the earlier examples,

or, perhaps, as is more familiar to most readers, cardinality can be assessed by count-

ing (the cardinality of a set is the last number one says when counting up the com-

prising members of said set). A second important property of numbers is ordinality;
ordinality answers the question, “What position (or rank)?” Ordinality is a property

of individual members of a set (the first runner, the second runner, etc.) in relation to
the other members of that set. Interestingly (and perhaps crucially), cardinal values

can also be ordered—for instance, one can order numbers in terms of their cardinality

(eg, in the set {1, 5, 12}, 1 is 1st, 5 is 2nd, 12 is 3rd; this illustrates that ordinal po-

sition and cardinal value need not be perfectly aligned; see also Fig. 1). It is in this

way that ordinality and cardinality are often intertwined, but as we shall see, they are

also dissociable, not only conceptually, as in Fig. 1, but also in terms of how humans

actually process ordinal and cardinal aspects of numbers.

The focus of this review is the ordinality of numbers. The substantial majority of

previous neural and behavioral work on how we process numbers has focused pri-

marily on the cardinality of numbers. Recent years, however, have seen a steady

uptick in work focusing on numerical ordinality. This work has begun to shed

new light not only on how we process ordinality in basic numerical contexts, but

is also beginning to reveal that ordinality is crucial for understanding howwe process

more abstract arithmetical and mathematical relations that make math such a

powerful tool. In the present review, we examine this recent upsurge in work on

numerical ordinality. A central conclusion of this review is that, simple as it may

seem, ordinal processing of numbers is in fact both complex and multifaceted.

We begin by providing an overview of research examining similarities and dif-

ferences between ordinal and cardinal processing. We conclude that the two are dis-

tinct, though the extent of this distinction likely depends on several contextual

factors. One such factor is whether the quantities being processed are represented

symbolically (eg, numerals) or nonsymbolically (eg, dot arrays). We next summarize

findings from several domains of ordinal processing that, while not necessarily

numerical (eg, letters of the alphabet or days of the week), may nevertheless prove

useful or even crucial for understanding the representation of order in numerical
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sequences. While we see clear relationships between numerical and nonnumerical

ordinal processing, evidence is either mixed or incomplete with respect to the ques-

tion of whether numerical ordinal processing is “merely” reducible to domain- or

stimulus-general processing of ordinal sequences. We also examine work that has

begun to unpack the underlying cognitive and neural mechanisms that support the

processing of numerical order, highlighting this as one potential area with signif-

icant opportunity for ground-breaking research. In the final section, we turn to how

ordinality may prove to be a crucial piece in understanding the acquisition of the

symbolic representation of numbers, as well as acquisition of more sophisticated

forms of numerical processing, such as mental arithmetic. In particular, we propose

that numerical order may play a key role in allowing symbolic representations of

numbers to go beyond the cardinal values they represent. Moreover, the multifac-

eted nature of ordinal processing may in turn be a key mechanism by which we

go beyond the item–item associations linking the count-list to the richer network

of associations that comprise a more sophisticated system of numerical thought.

Throughout the review, we scrutinize the limitations of the current work on numer-

ical ordinality and suggest future avenues of research that might test and address the

gaps and weaker points in our current understanding of how numerical ordinality is

processed, and what a better understanding might mean for numerical and mathe-

matical cognition.

FIG. 1

Schematic illustration of ordinality and cardinality.
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2 HOW DIFFERENT ARE ORDINALITY AND CARDINALITY?
Numbers convey different meaning in different contexts. As noted in the introduc-

tion (see also Fig. 1), the Indo-Arabic numeral 3, depending on the context, may refer

to three apples (cardinality), or to the third runner in a marathon (ordinality). As

adults, we are able to shift between these different numerical contexts, suggesting

a differentiation in the way we represent ordinal and cardinal numbers. In this sec-

tion, we review empirical evidence that yields insight into the similarities and dif-

ferences between how we actually process ordinality and cardinality. One

important conclusion is that ordinal and cardinal processing may be particularly dis-

tinct for symbolic representations of number.

2.1 ORDINAL AND CARDINAL PROCESSING IN THE BRAIN
Neuropsychological case studies have demonstrated selective impairments of ordin-

ality and cardinality in brain-damaged patients (Delazer and Butterworth, 1997;

Turconi and Seron, 2002). Delazer and Butterworth (1997) reported the case of a

56-year-old patient SE who suffered from a left frontal infarct. SE showed severe

impairments in arithmetic and number comparison (“Which of two presented nu-

merals is numerically larger?”—ie, relative cardinality). However, SE demonstrated

no difficulties in producing number sequences (either with spoken numbers words or

written Arabic numerals), counting dots, or naming or writing the correct number

when asked “Which number comes next?” In other words, SE showed deficits in car-

dinal aspects of number processing, but relatively preserved ordinal processing of

numbers. The opposite pattern was observed in patient COwho suffered from lesions

in the left posterior parietal cortex and the right parietal occipital junction (Turconi

and Seron, 2002). CO showed little impairment in comparing numbers or in judging

the correct position of numerals on an analogue scale. However, CO demonstrated

severe difficulties when judging ordinal relationships between numbers, letters of the

alphabet, days of the week, and months of the year. He was unable to indicate

whether a number comes before or after 5, whether a letter comes before or after

the letter M, or whether a day comes before or after Wednesday. The selective im-

pairment of either the ordinal or the cardinal meaning of numbers (ie, double-

dissociation) in brain-damaged patients, provides strong evidence that the processing

of ordinality and cardinality are associated with different computational systems

within the human brain. However, this observed dissociation in brain-damaged pa-

tients does not necessarily imply that ordinal and cardinal representations are func-

tionally unrelated in intact brains.

Using functional magnetic resonance imaging (fMRI) with healthy adult partic-

ipants, Lyons and Beilock (2013) examined ordinal and cardinal processing of sym-

bolic numbers (Indo-Arabic numerals), nonsymbolic numbers (dot arrays), and

nonnumerical magnitudes (luminance). For ordinal tasks, participants determined

whether three stimuli were in left–right order (increasing or decreasing—eg, 1-2-3,

3-2-1) vs not in order (eg, 1-3-2, 3-1-2). For cardinal tasks, participants determined
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which of two stimuli was numerically greater (or brighter in the luminance control

tasks). Numerical processing was isolated by subtracting activity associated with

the relevant luminance task (ordinal or cardinal; visual features—numerals or

dots—were also matched) from the numerical task. Results showed a highly similar

frontoparietal network was active for ordinal and cardinal judgments specifically for

nonsymbolic quantities (dot arrays; Fig. 2A). By contrast, there was no overlap any-
where in the brain (even at highly liberal thresholds) between ordinal and cardinal

judgments for symbolic numbers (ie, numerals). This suggests that, while ordinal

and cardinal processing may be closely linked for nonsymbolic quantities such as

arrays of dots, this is less the case for symbolic numbers. In general, it appears, from

both the neuropsychological work with brain-damaged patients as well as more

recent functional neuroimaging work with healthy participants that processing the

cardinality and ordinality of numerical symbols relies on different brain circuits.

FIG. 2

(A) A common, right-lateralized frontoparietal network for nonsymbolic ordinal and cardinal

processing. Regions are the conjunction of dot-ordering greater than luminance-ordering

and dot-comparison greater than luminance-comparison. Note that no regions showed

a similar conjunction of symbolic ordinal and cardinal processing. (B) Left premotor regions

specifically activated for the symbolic number ordering.

Adapted from Lyons, I.M., Beilock, S.L., 2013. Ordinality and the nature of symbolic numbers. J. Neurosci.

33 (43), 17052–17061.
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2.2 DISTANCE EFFECTS: DIFFERENT SIGNATURES OF ORDINAL
AND CARDINAL PROCESSING
Both behavioral and neuroimaging work have converged to indicate that a key sig-

nature of number processing—the distance effecta—also distinguishes cardinal and

ordinal number processing. However, this distinction is not perfect: it may depend, as

we saw in the previous section, on symbolic vs nonsymbolic presentation format, as

well as the exact paradigm used. Thus, we see that ordinal and cardinal processing of

numbers are intertwined to some extent, but important distinctions can and should be

made in pursuit of a complete understanding of how we process numbers.

While canonical distance effects are typically seen for cardinal judgments

(eg, Buckley and Gillman, 1974; Moyer and Landauer, 1967), distance effects are

sometimes reversed for ordinal judgments: one is faster to verify that (4 n 5) is in

order than (3 n 6) (Turconi et al., 2006). The reversal of the distance effect has since

been replicated across different studies (Franklin and Jonides, 2009; Franklin et al.,

2009; Goffin and Ansari, 2016; Lyons and Beilock, 2013) and is particularly robust

when participants are asked to judge the order of presented number triplets (eg, 1-2-3)

instead of number pairs. Reversed distance effects thus provide a clear behavioral

signature that is qualitatively distinct for ordinal and cardinal processing, which

is consistent with the notion that the two forms of numerical processing differ in

important ways, as discussed in the previous section. Specifically, it has been argued

that reverse distance effects indicate order-specific mental operations, which are

distinct from cardinality discrimination, and may be reflective of a mechanism

that enables a fast recognition of successively ordered numbers (Franklin et al.,

2009; Lyons and Beilock, 2013; Turconi et al., 2006). Consistent with this notion,

Goffin and Ansari (2016) demonstrated that canonical and reverse distance effects

are uncorrelated across subjects.

Neuroimaging evidence is also consistent with the notion that reversed vs canon-

ical distance effects indicate a qualitative distinction between ordinal and cardinal

numerical processing, respectively. Using only symbolic stimuli, Franklin and

Jonides (2009) had participants either judge the relative order of number triplets (or-

dinal processing) or the relative magnitude of number pairs (cardinal processing).

Consistent with the work reviewed above, they found reverse distance effects for cor-

rectly ordered triplets in the ordinal task and canonical distance effects in the cardinal

task. Substantial prior work has implicated the intraparietal sulci (IPS) in numerical

processing in general (for a review, see Ansari, 2008; Nieder and Dehaene, 2009);

however, prior to Franklin and Jonides, primarily cardinal judgments had been

assessed using fMRI. The authors found overlapping distance effects for ordinal

aThe classic, or canonical, distance effect is obtained when one asks participants (adults, children, non-

human animals, etc.) to determine the relative cardinality of two numbers (symbolic or nonsymbolic).

Results consistently show that participants perform worse—slower response times and higher error

rates—when the absolute numerical distance between the two numbers is smaller (e.g., 4 n 5 is harder

than 3 n 6).
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and cardinal judgments in the IPS, consistent with the notion that this region plays a

key role in numerical processing more generally. Crucially, however, this overlap

was only seen when the direction of the contrast for the ordinal task was reversed:

for the cardinal task, greater IPS activity was seen for close relative to far distances;

for the ordinal task, greater IPS activity was seen for far relative to close distances. In

other words, activity in a brain region typically seen as central to number processing

was highly dependent on whether the task context was ordinal or cardinal in nature,

consistent with the need to distinguish these two aspects of how we process and un-

derstand numbers.

It is important to acknowledge, however, that the reversal of distance effects

tends to be highly sensitive to context. For instance, reverse distance effects tend

to be seen only when the stimuli are in fact correctly ordered (eg, performance is

better when verifying that 3-4-5 is in order relative to 2-4-6). One in fact typically

sees canonical distance effects for unordered sets (eg, one is faster to reject 4-6-2 than

4-5-3 as not in order). This suggests that, as noted earlier, ordinal and cardinal pro-

cessing, while distinct, are not entirely unrelated. However, Vogel et al. (2015) found

that—at least in first graders—even canonical distance effects in ordinal judgments

were uncorrelated with canonical distance effects in cardinal judgments.

In a similar vein, Turconi et al. (2004) also demonstrated canonical distance ef-

fects for both ordinal and cardinal judgments when comparing numbers to a standard

held in mind. Participants performed a number comparison task (is the presented

number larger or smaller than 15) and a number ordinal judgment task (does the pre-

sented number come before or after 15). The authors also recorded event-related po-

tentials (ERPs). ERP analyses demonstrated significant canonical distance effects for

both ordinal and cardinal judgments at the P2 component over parietal electrodes;

however, significantly shorter latencies and greater amplitudes were found for the

cardinal task. Moreover, the ordinal task showed a significant canonical distance ef-

fect over right parietal electrodes and a significant amplitude difference over pre-

frontal regions at the P3 component (cardinal judgments showed neither effect).

Thus, in spite of showing canonical distance effects for the ordinal task, both

Vogel et al. (2015, discussed earlier) and Turconi et al. (2004) found further evidence

that ordinal and cardinal judgments elicit distinct processes.

Given the sensitivity of distance effects to context in ordinal judgments, it is

worth noting that Vogel et al. (2015) used pairs instead of triplets for their ordinal

task (ie, similar to Turconi et al., 2006). In contrast to Turconi et al., however, Vogel

et al. found a canonical distance effect for the ordinal task—even for ordered pairs.

One obvious discrepancy between the two studies is that Turconi et al. examined

adult participants and Vogel et al. tested first graders. Interestingly, Lyons and

Ansari (2015) also examined first graders, but, using a triplet version of the ordering

task, they found robust reverse distance effects. This suggests that for certain ver-

sions of ordinal judgments, task and participant parameters may play an important

role in determining the pattern of results with respect to distance effects. One pos-

sibility is that certain task parameters may bias some participants to emphasize pri-

marily ordinal vs cardinal strategies, or the other way around. On the one hand, this
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highlights the highly contextually dependent nature of number processing; but it also

clearly indicates a need for future research to better unpack the relevant parameters

and constraints as they pertain to ordinal processing of numbers in particular.

It is also worth noting that there is some discrepancy regarding precisely for

which distances the distance effects are reversed in ordinal judgments. Examining

adult subjects with number pairs, Turconi et al. (2006) reported reverse distance ef-

fects only for distance 1; that is, performance on ordered trials with a distance of

1 (4 n 5) was better than on trials with distance 2 (3 n 5), but this pattern did not extend

to larger distances. Using triplets and also with adult participants, Goffin and Ansari

(2016) found a similar result. One possibility is that reverse distance effects are lim-

ited only to numbers that are adjacent in the count sequence. However, Franklin and

Jonides (2009; see also Franklin et al., 2009, for a similar result) found robust dis-

tance effects (using triplets with adult subjects) for stimuli that were not strictly

adjacent; eg, (22-23-25) and (25-23-22) were verified as being in order more rapidly

than (22-26-28) and (28-26-22).b Furthermore, in 1st–6th grade children, Lyons and
Ansari (2015) found that the pattern of a reverse distance effect for ordered trials

(using triplets) extended out to distances of three for both single- and double-digit

trials. Finally, Franklin et al. (2009) found that reverse distance effects were partic-

ularly strong when crossing a category boundary (decades for numbers, years for

months), a pattern that was also seen in Lyons and Ansari (2015). Hence, on the

one hand, it does not seem to be the case that reverse distance effects can be written

off as pertaining “just” to adjacent items in the count sequence; on the other hand, the

precise circumstances in which it obtains (and the implications this may have for

the underlying mechanisms behind ordinal processing) remain unclear. Though we

return to this issue in a later section, the need for further work in this area is evident.

2.3 SYMBOLIC VS NONSYMBOLIC ORDINAL PROCESSING
Another important context that may modulate distance effects in numerical ordinal

judgments is format—specifically, whether numbers are presented symbolically or

nonsymbolically. Consistent with several studies reviewed earlier, Lyons and

Beilock (2013) showed reverse distance effects for ordinal judgments over ordered

sets of number symbols (numerals). In contrast, only canonical distance effects were

found for nonsymbolic quantities (dot arrays), regardless of context (ordered or not

ordered). This is consistent with the authors’ fMRI results indicating that symbolic

and nonsymbolic number ordering are distinct. To the best of our knowledge, reverse

distance effects have only been found when assessing the ordinality of symbolic

stimuli, which suggests the distinction between ordinal and cardinal processing

may be especially pronounced for number symbols.

bNote that the presence of reverse distance effects for increasing and decreasing trials was also found

for triplets in Lyons and Beilock (2013).
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This distinction is broadly consistent with an influential review byMarshuetz and

Smith (2006), who suggested that both magnitude and associative (or retrieval-

based) mechanisms play a role in ordinal processing more generally. One critical fac-

tor may be whether stimuli are represented as nonsymbolic, approximate magnitudes

or symbols. Specifically, while ordinal processing of approximate, nonsymbolic in-

puts may depend crucially on a magnitude (ie, cardinality)-based mechanism, the

same may not be true for certain symbolic inputs (Lyons and Beilock, 2013; see also

Fig. 2). Instead, albeit speculative, symbols may provide direct retrieval to a richer

network of associative links (for similar theoretical positions, see Deacon, 1997;

Nieder, 2009; Wiese, 2003).c It may also be the case that, at least for overlearned

ordinal relations, this direct retrieval access to ordinal information may trump

magnitude-based mechanisms of assessing order (Logan and Cowan, 1984; see

Franklin et al., 2009, for a similar suggestion). This in turn may help explain why

the reversal of distance effects in symbolic ordinal tasks depends on whether the

stimuli are in fact in the correct order. Those that are in order permit direct retrieval

of ordinal information (and adjacent items are retrieved faster); whereas those that

are not in order must instead be processed in a magnitude-based manner (thus engen-

dering a classical distance effect in such cases). Nonsymbolic magnitudes, by con-

trast, do not have access to ordinal associations, implying the presence of canonical

distance effects in all contexts (which is precisely what was found).

2.4 SUMMARY
In sum, multiple sources of neural and behavioral evidence support the need to dis-

tinguish between ordinal and cardinal processing of numbers. Importantly, however,

various contextual factors—in particular whether quantities are presented symboli-

cally or nonsymbolically—may bias the degree of this dissociation. In the next sec-

tion, we turn to the question of whether ordinal processing of numbers is distinct

from ordinal processing of other, nonnumerical stimuli that can be ordered.

3 IS NUMERICAL ORDER SPECIAL?
Numbers share important ordinal properties with nonnumerical categories such as let-

ters of the alphabet, days of theweek,months of the year, and so on. In this section, we

review a small but growing body of evidence—both neural and behavioral—

indicating important similarities betweennumerical andnonnumerical ordinal proces-

sing.Despite these similarities, it remains unclearwhether these similarities are driven

by commonprocesses or representations (an ideawe also return to in a later section). In

general, precisely how numerical order fits into the broader range of ordinal capacities

remains relatively understudiedand soprovides ampleopportunity for future research.

cThe reader might also find it useful to skip ahead to Fig. 3A for a visual illustration of the various types

of ordinal associations.

1953 Is numerical order special?



3.1 SPECIFICITY OF NUMERICAL ORDER IN THE BRAIN
As described in a previous section, patient CO showed not only difficulties in acces-

sing the ordinal meaning of numbers, but also exhibited deficits with other nonnu-

merical symbolic sequences (Turconi and Seron, 2002). For instance, COwas unable

to decide if a presented letter came before or after the letter M, whether a day came

before or after Wednesday, and whether a month of the year came before or after

June. This common pattern of deficits indicates a similarity in the neural organization

of numerical and nonnumerical ordered sequences.

One of the first neuroimaging studies to investigate the extent to which the neural

correlates associated with numerical and nonnumerical order are similar or different

was conducted by Fulbright et al. (2003). In this fMRI study, participants were asked

to judge whether three letters, (symbolic) numbers, or arbitrary shapes were in order

(ascending or descending) or not (some other permutation). Control tasks were cor-

responding identity judgments (letters, numbers, shapes, respectively). After sub-

tracting activity from the respective control conditions, similar brain networks

were found for letter and number ordinal conditions. Activation overlap for numbers

and letters was primarily found in parietal, prefrontal, premotor, occipital, and basal

ganglia regions. The common brain activity for numbers and letters provided initial

evidence that numerical and nonnumerical ordinal processing engage similar brain

regions, and that computational mechanisms may be shared across different classes

of ordinal stimuli. It should be noted, however, that the functional overlap in this

study was not statistically tested, but rather inferred from visual inspections.

In another study probing the neural correlates of both numerical and nonnume-

rical order, Ischebeck et al. (2008) found a similar result. Participants silently recited

numbers from 1 to 12 and months of the year from January to December (Ischebeck

et al., 2008). Relative to the categorical (ie, nonordinal) control condition, the authors

found common brain activation in left premotor, prefrontal, and bilateral parietal re-

gions. This activation pattern provides further evidence for the involvement of sim-

ilar brain regions when ordinal relationships in numerical and nonnumerical stimuli

are processed, and it demonstrates that the result generalizes across different exper-

imental paradigms.

Fias et al. (2007) provided still more converging evidence for similar neural cor-

relates underlying numerical and nonnumerical ordinal processing. They used a two-

item comparison paradigm with number (symbolic), letter, or saturation (akin to lu-

minance) stimuli. Specifically, participants were instructed to decide which of two

presented numerals was numerically larger, which of two letters came later in the

alphabet, and which of two squares was more saturated (the lattermost was treated

as the control condition). A conjunction analysis revealed the engagement (activity

jointly higher than control) of a highly similar brain network for processing letters

and numbers, comprising regions of the occipital, temporal, frontal, and parietal

cortices. Interestingly, Zorzi et al. (2011) subsequently reanalyzed a portion of the

Fias et al. data and came to a somewhat different conclusion. Given its generally

recognized importance in number processing, Zorzi and colleagues focused specif-

ically on the overlapping IPS regions found for the letter and number comparison
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tasks (the other overlap regions from Fias et al. were not analyzed). Using a

multivoxel pattern analysis approach, they were able to successfully classify

(ie, distinguish between) number and letter trials. Hence, while overlapping brain

regions were found for these tasks in the univariate analysis presented by Fias

et al., this overlap masked a more fine-grained distinction in terms of the voxelwise

response patterns each stimulus-type elicited (at least within the IPS; we also return

to this apparently contradictory result in a later section on ordinal mechanisms).

Thus, the three neuroimaging studies discussed above (Fias et al., 2007; Fulbright

et al., 2003; Ischebeck et al., 2008) converge to indicate that common brain networks

are activated for both numerical and nonnumerical types of ordinal processing (though

Zorzi et al., 2011, provide an important cautionary note). It is also worth noting that in

each case, the authors primarily focused on symbolic stimuli, and indeed Fias et al.

(2007) conducted their conjunction analysis by expressly subtracting the nonsymbolic

(saturation) condition from the two symbolic conditions (letters and numbers). We

have already noted how symbolic and nonsymbolic numerical ordinal processing dif-

fer in important ways (eg, Lyons and Beilock, 2013). Hence, an important and largely

unaddressed issue concerns whether similar neural responses for numerical and non-

numerical ordinal processing are found for nonsymbolic stimuli.

Furthermore, the authors of the papers reviewed above focused their discussion

primarily on the parietal cortex, and the IPS in particular. That is, both theoretical dis-

cussions and region of interest (ROI) analyses (in Fias et al., 2007; Ischebeck et al.,

2008; Zorzi et al., 2011) tended to focus primarily on the IPS. This is understandable

given the highdegree of attention that has been paid to the parietal cortex and the IPS in

particular in the numerical cognition literature (for a review, see, eg, Ansari, 2008;

Dehaene et al., 2003;Nieder andDehaene, 2009).And indeed, the fact that the authors’

results largely generalized to other, nonnumerical types of stimuli calls into question

claims about the specificity of the IPS with respect to numerical processing. On the

other hand, a high level of preoccupation with one particular brain region may blind

researchers to other interesting patterns in the data. For instance, Fulbright et al.

(2003), Fias et al. (2007), and Ischebeck et al. (2008) all found common ordinal pro-

cessing of (symbolic) numerical and nonnumerical stimuli not just in parietal, but also

premotor and prefrontal cortices (though see Footnote d for an interesting exception in

the case of Zorzi et al., 2011).

Consistent with the notion that ordinal processing is not restricted to the IPS,

Lyons and Beilock (2013) found neural activity specific to ordinal processing

of number symbolsd in premotor cortices, including dorsal and ventral left lateral

dAreas were localized based on the contrast of symbolic number ordering greater than luminance-

ordering control. Left PMd and PMv each showed greater brain activity for symbolic ordinal processing

than symbolic cardinal processing (numerals), and nonsymbolic numerical ordinal and cardinal proces-

sing (dot arrays). Pre-SMA showed the same result, with the exception that symbolic ordering was not

significantly greater than nonsymbolic ordering (Lyons and Beilock, 2013, Table 5). Note that this latter

result is broadly consistent with Zorzi et al. (2011), who found that multivariate classifiers were unable to

classify numerical and nonnumerical symbolic ordering in SMA, suggesting SMAmay process ordinality

in a highly general manner. Zorzi et al. did not examine the other premotor regions fromFias et al. (2007).
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premotor areas (PMd and PMv, respectively) and presupplementary motor area (pre-

SMA) (Fig. 2B). Premotor cortex may be of particular interest with respect to ordinal

processing as this region also shows greater activity for extraction of numerical in-

formation from tone sequences in both humans andmonkeys (Wang et al., 2015), and

it is richly populated with order-sensitive neurons in general (Berdyyeva and Olson,

2010). Thus, just as the majority of prior work in the area of numerical cognition has

focused on cardinal processing of numbers, much of this work to date has also tended

to focus on the parietal lobe. As this review has illustrated, it is important to consider

the role of ordinality as well as cardinality in how we understand numbers; hence, it

is perhaps also reasonable that we extend our focus to number-relevant brain regions

beyond parietal cortex. In this respect, both Lyons and Beilock (2013), as well as

several of the studies discussed earlier, converge to indicate that premotor areas

may also be key to understanding the ordinal side of (at least symbolic) numbers.

Potentially consistent with a more domain-general view of numerical ordinal pro-

cessing, premotor cortex has been associated with a wide range of potentially rele-

vant processes that are not strictly numerical. For instance, the SMA has been shown

to be important for sequential order processing more broadly (Gerloff et al., 1997;

Tanji, 2001), and PMd and PMv areas are involved in retrieval of action plans in

response to overlearned symbolic associations in a wide variety of contexts

(Grafton et al., 1998; Hoshi and Tanji, 2007; O’Shea et al., 2007; Wise and

Murray, 2000). Of course, precisely what these brain areas may mean in terms of

understanding the mechanisms behind acquisition and access of ordinal information

in number symbols remains an open area of research. However, considering such

mechanisms from other cognitive domains underscores the general theme of this sec-

tion that ordinal processing of number very likely draws substantially on more gen-

eral mechanisms for processing ordinal stimuli. We come back to this topic in greater

detail in a subsequent section by examining various cognitive mechanisms that may

be associated with ordinal processing.

3.2 HOW NUMBER SPECIFIC ARE CANONICAL AND REVERSE
DISTANCE EFFECTS?
In the previous section, we reviewed evidence that distance effects—specifically

whether they are canonical or reversed—can distinguish between ordinal and cardi-

nal processing of (symbolic) numbers, as well as between symbolic and nonsymbolic

ordinal processing of numbers. It is well known that canonical distance effects are

not unique to numerical stimuli,e so it seems useful to consider whether behavioral

signatures of numerical ordinal processing also generalize to nonnumerical se-

quences. It is also worth noting that, to the best of our knowledge, this question

has been asked almost exclusively of symbolic stimuli (eg, letters, months, weeks,

eFor example, distance effects are found when fruit flies discriminate between odors (Parnas et al.,

2013), and when humans discriminate between species using abstract line drawings of animal figures

(Gilbert et al., 2008).
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etc.). An important but still unexplored question concerns whether the behavioral

signatures of nonsymbolic numerical ordinal processing generalize and/or relate

to other types of nonsymbolic ordinal processing (eg, luminance, size, length, etc.).

Using pairwise comparisons, (which of two stimuli comes later in a given ordered

set), several researchers have demonstrated canonical distance effects for nonnume-

rical stimuli. The presence of a canonical distance effect in letter comparisons was

first reported in a study by Hamilton and Sanford (1978). In this study, participants

were asked to indicate whether or not letter pairs were presented in the correct alpha-

betical order (ie, ascending) or not (ie, descending). Similar canonical distance ef-

fects have also been reported for days of the week (Gevers et al., 2004), months

of the year (Gevers et al., 2003), and even after human adults were trained to learn

arbitrary sequences with novel symbols (van Opstal et al., 2008, 2009).f On the other

hand, the extent to which numerical and nonnumerical distance effects are directly

related to one another remains largely unknown. To the best of our knowledge, only

one study has thus far reported a correlation between the size of the distance effect

of numbers and letters (Attout et al., 2014), possibly indicating an association be-

tween the processing of numerical and nonnumerical sequences. However, this cor-

relation was eliminated once the reaction times of a luminance discrimination task

were taken into account, indicating that the observed correlationmay be explained by

shared domain-general mechanisms (eg, response selection) rather than a common

representation of numerical and nonnumerical sequences.

Investigations that have focused on triplets (which, as noted earlier, tend to be

more reliable in eliciting reverse distance effects for symbolic numbers) have

revealed the existence of reverse distance effects for nonnumerical order judgments

as well. For instance, Franklin et al. (2009) had participants indicate whether triplets

of numbers and months were in increasing order or not. Results showed a reverse

distance effect for both types of stimuli (numbers and months). Here again, an ex-

amination of the relation between reverse distance effects for numbers and months

would be ideal. That said, both numbers and months showed larger reverse distance

effects on trials where a category boundary was crossed (ie, numbers crossing a de-

cade, months crossing the year boundary), which lends a degree of additional spec-

ificity, though admittedly the precise reason for this result is unclear. In general, the

current evidence is rather limited and more work is needed to better understand the

precise nature of apparent similarities in distance effects for numerical and nonnu-

merical ordinality judgments. In the next two sections, we turn to the origins of or-

dinal understanding and the potential mechanisms by which ordinality in numbers

may be acquired and processed. In this way, the similarities and differences between

symbolic, nonsymbolic, numerical, and nonnumerical ordinal processing may begin

to come into better focus.

fOne may notice that these results appear to differ from Turconi et al. (2006), who reported a reversal of

the distance effect for numbers even for pairwise judgments. That said, Turconi et al. found reverse

distance effects only when they examined increasing trials, so it is possible that a similar pattern might

be found if analyses were similarly constrained with these other nonnumerical stimuli.
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3.3 SUMMARY
Both neural and behavioral evidence suggest a high degree of similarity for processing

numerical and nonnumerical ordinal information. On the other hand, there is currently

far too little evidence to conclude that numerical ordinal processing can “merely” be

reduced to nonnumerical ordinal processing. For one, it is entirely possible that in cer-

tain cases the reduction runs in the other direction, with numerical ordinality providing

the underlying mechanism for other types of ordinality. For example, letter ordinality

may perhaps be reducible to numerical ordinality. Moreover, even if numerical ordinal

processing is reducible to other forms of ordinal processing in other domains

(eg, action or verbal sequencing), it is far from clear into which domain or domains

numerical ordinality should be subsumed. Finally, as we return to in a later section

on mechanisms that support numerical ordinality, there are likely multiple such mech-

anisms, some of which are more domain general, and others which are more specific to

numerical processing. Thus, the right question to ask may not be whether numerical

order can be reduced to domain-general processing mechanisms, but instead it may be

most fruitful to understand the different facets and levels of ordinal processing, and

hence the extent to which each of these may or may not be more general or specific

with respect to processing domain. In sum, the relation between numerical and non-

numerical ordinal processing presents both a substantial gap in our understanding, and

thus also a major opportunity for future research.

4 INCREASING ORDINAL COMPLEXITY: FROM NONHUMAN
ANIMALS TO DEVELOPMENT AND ACQUISITION OF
ORDINALITY IN HUMANS
As we have seen from previous sections, ordinal processing appears to be highly sen-

sitive to context. In addition, it also allows for a wide range of ordinal relations and

inferences. For instance, to know what comes after one-hundred, one does not have

to mentally traverse the entire count-list in a step-by-step fashion. Indeed, even in

nonhuman primates, understanding of ordinal position allows one to go beyond sim-

ple associative chaining. Thus, it appears as though mentally representing relative

order allows for a much richer set of information—eg, ordinal position, associative

links between nonadjacent items, and relative ordinal direction (Fig. 3). In other

words, one of the key features of ordinal processing is that it is highly multifaceted.

Moreover, the complexity and richness of ordinal information appear to be gradually

acquired over the course of human development. This complexity may also prove

especially useful in acquiring associative relations that link abstract symbolic repre-

sentations of number in particular.

4.1 COMPLEX ORDINAL PROCESSING IN NONHUMAN ANIMALS
Terrace et al. (2003) demonstrated that monkeys (Macaca mulatta) are capable of

understanding ordinal relations beyond simple item–item chaining. Using an inno-

vative “simultaneous chaining” paradigm, Terrace and colleagues (2003; for a
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review, see Terrace, 2005) trained monkeys to memorize several 7-item lists. Stimuli

were arbitrary images of objects and scenes, and each trial proceeded with the mon-

key attempting to select (using a touchscreen) the entire sequence in order. The spa-

tial location of each image was randomized on each trial to prevent simple

memorization of motor or spatial sequences. In addition, the only form of feedback

was that the trial would terminate if an incorrect image was selected—ie, if the se-

lected image was not in fact the next in the sequence. Reward was not given until the

entire sequence was produced correctly. Negative feedback (in the form of trial ter-

mination) was thus not item specific, and it was accompanied by a several second

FIG. 3

Schematic view of different types of ordinal associations. (A) shows two arbitrary but ordered

lists or sequences. Item–item associations between adjacent items within a list are shown

with gray lines. Deeper associations between nonadjacent items (ie, those that are often

inferred associatively) are shown with lines in rainbow colors. Associations between lists

based on ordinal position are shown with dashed lines. (B) Ordinal positional coding based

on magnitude. The width of each curve corresponds to the accuracy or precision of a

given positional code, with the first-item coded most accurately, and precision decreasing

thereafter. (C) Coding scheme based on endpoint anchoring, wherein the endpoints of the

list are represented most accurately, with precision decreasing as one moves toward the

middle of the list or sequence.
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delay before the next trial began. This meant that memorization of current ordinal

position was crucial for making use of any information provided by an incorrect re-

sponse. For instance, the knowledge that image X is incorrect with the first two im-

ages already known is applicable only to identifying the third image in the sequence

(X could still be the 4th, 5th, 6th, or 7th image). Perhaps most remarkable is that, after

all four 7-item lists were correctly learned, monkeys were able to substitute images

from different lists at their correct ordinal position. If a monkey was presented with a

mixture of images from the four lists, they could order the new list based on each

image’s ordinal position in the list from which it originated (conflicting ordinal posi-

tions were avoided in the novel lists). Indeed, when seeing a novel, mixed list, mon-

keys were able to correctly produce the entire 7-item sequence 91% of the time on the

first trial (ie, dashed lines in Fig. 3A). It is difficult to see how such a result could be

obtained if monkeys merely memorized each list as a simple chain of direct associa-

tions (the first item to the second, the second to the third, and so on). Instead, ordinal

information was both positional and abstract in that it could be generalized to a new

context.

This is not to say that item–item associations play no role in ordinal processing

(gray lines in Fig. 3A). However, it is perhaps unclear how even these simple asso-

ciations are processed. When asked to memorize a list and then given the item that

comes after some probe item, response times increase as a function of the position of

the item in the list (Sternberg, 1967). One account is that an individual must traverse

the item–item associations, thus generating longer response times as the number of

items to be traversed increases (for a review, see Marshuetz and Smith, 2006). Using

a computational modeling approach, Verguts and Van Opstal (2014) present an in-

teresting alternative account: they showed that much the same positional effect can

be obtained by simply manipulating how frequently items are presented so that fre-

quency declines with increasing ordinal position. Indeed, such frequency asymmetry

is precisely what one would expect if lists are memorized via a rehearsal strategy, the

role of which has long been recognized in generating primacy effects in list-recall

paradigms more generally (Rundus, 1971). The important thing is that both accounts

highlight the importance of item–item associations. The first one asserts that serial

position effects are the result of the number of associations traversed; the other sug-

gests one need not traverse the entire sequence, and that positional effects may in-

stead be due to the frequency (and hence the retrieval efficiency) of a given item.

This latter account is more consistent with the importance of encoding positional in-

formation in addition to item–item associations. It is also consistent with results

obtained in studies on the maintenance of list information in short-term memory.

When multiple sublists are held in memory, one is likely to confuse items in the same

relative position within each sublist (Henson, 1999).

While it is clear from the above that item–item associations play a role in ordinal

processing, humans and other species are also capable of inferring nonadjacent

ordinality even when trained only with respect to adjacent item–item information.

For instance, when trained on A!B, B!C, C!D, D!E, humans, primates,

and even pigeons can infer that A!C, B!E, and so on (eg, Treichler and
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Van Tilburg, 1996; Van Opstal et al., 2008, 2009; von Fersen et al., 1991). Thus,

ordinal processing goes beyond adjacent item–item associations not only in terms

of ordinal position, but also allows for a richer network even of item–item associa-

tions (rainbow-colored lines in Fig. 3A).

Against this backdrop, numerical and other types of magnitude (eg, size, lumi-

nance, length, etc.) are particularly interesting because in one sense they can be thought

of as providing inherent cues to relative order. That is, the majority of studies noted

earlier relied on lists whose relative order was entirely arbitrary with respect to the

properties of the stimuli themselves; hence, being arbitrarily defined, relative order

had to be learned. Two stimuli of different magnitudes (eg, a small circle and a large

circle, an array of a few dots and an array of many dots, etc.) inherently allow for a

magnitude-based distinction that can in turn be used to construct an ordinal sequence.

To this end, Brannon and Terrace (1998) trained monkeys to respond to arrays of dots

in terms of increasing numbers of dots in each array (1!2!3!4). Monkeys were

then shown sets of arrays containing 5–9 dots, and they were capable of responding in
ascending order to the novel set. In essence, the monkeys learned to recognize relative

ordinal information in nonsymbolic magnitudes and were able to transfer this to a new

set of magnitudes. Brannon (2002) also showed that human children as early as 9

months are sensitive to ordinal direction in relative perceptual magnitudes.g

Interestingly, at least in monkeys, Brannon et al. (2006) demonstrated that sen-

sitivity to global ordinal direction is dependent upon reference points. Monkeys were

trained either on ascending (4!5!6) or on descending (6!5!4) sequences of

nonsymbolic magnitudes and were then tested on pairs of numbers (all combinations

1–9). The monkeys’ task at test was to order the pair in the same direction as training

(eg, 2!3 for ascending training and 3!2 for descending training). Critical test

pairs involved only magnitudes not included in training (1–3, 7–9). Results showed
that, regardless of training order, monkeys were not able to work backward from the

starting reference point of the training set (down from 4 in the ascending condition,

up from 6 in the descending condition). Specifically, monkeys were above chance so

long as at least one of the magnitudes in the novel test pair was in the direction im-

plied by the training set (7–9 for ascending, 1–3 for descending). Monkeys were at or

below chance when both items in a test pair were in the direction opposite to that

implied by training (1–3 for ascending, 7–9 for descending). The relative difference
inherent when comparing perceptual magnitudes can be used to infer relative order;
however, it appears that this capacity is highly dependent upon context—for instance

upon ordinal direction and the reference point of the training set. Note that this con-

clusion is in keeping with the review of ordinality and cardinality above: the two are

certainly intertwined to some extent, but it would be a mistake to consider them one

and the same.

gNote that Suanda et al. (2008) later demonstrated that children at 9mos require multiple converging

cues (eg, individual item size, overall surface area, etc.); whereas by 11mos, both Suanda et al. and

Brannon (2002) showed that children’s sensitivity to ordinal direction of nonsymbolic magnitudes

is more robust to incongruent cues as well.
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4.2 GOING BEYOND SIMPLE ITEM–ITEM ORDINAL ASSOCIATIONS
IN HUMAN DEVELOPMENT AND LEARNING
Evidence from early acquisition of the meaning of number words in human children

also coincides with the work reviewed earlier, by showing that ordinal understanding

can (and often does) go beyond simple item–item chaining. However, this deeper

understanding of ordinality develops only gradually. Children around the age of 2

or 3 are often able to recite the verbal count-list (one, two, three) in the correct order,

and they even understand that each word refers to a distinct number. Crucially, how-

ever, they are often unaware to which number each word refers (Wynn, 1992). Young

children, in other words, are able to recite an ordered chain of words prior to cardinal

understanding (ie, knowing how the chain of words can be applied to counting a set

of objects such that the last word said indicates the cardinal value of the set). Colom�e
and Noël (2012) demonstrated that children 3–5 years are better at solving numerical

tasks when phrased in cardinal (How many) vs ordinal (What position) terms. This

may be due in part to the fact that cardinal number words (one, two, three) are en-

countered more frequently than ordinal number words (“first, second, third”;

Dehaene and Mehler, 1992). On the other hand, Michie (1985) showed that children

3–5 years tend to be able to match visually presented sets of items in terms of their

cardinality prior to being able to assess whether sets of items are correctly ordered.

Similarly, Knudsen et al. (2015) recently demonstrated that in children 4–7 years, the
ability to sort sets of numerals into the correct order lags behind verbal (number–
word) cardinal understanding. However, cardinal and ordinal understanding of nu-
merals appeared to develop concurrently between the ages of 4 and 5. Together, the
above evidence seems to indicate that cardinal understanding of number-words and

sets of visual objects precedes ordinal understanding thereof, though the impact of

word-frequency and whether this pattern extends to the acquisition of numerals re-

main unclear. Regardless, these results suggest that simply being able to recite the

count-list does not imply either cardinal or more sophisticated ordinal processing.

That said, the precise developmental relation between and trajectories of cardinal

and ordinal understanding of numbers remains somewhat unclear. What perhaps

can be said most clearly is that—at least compared to cardinality—there is a relative

dearth of research on the early acquisition of ordinal understanding and processing of

numbers in human children. Such workmight prove especially fruitful in understand-

ing the acquisition and efficient processing of numerical symbols.

Results from adult training studies may shed some light on the contribution of

ordinality and ordinal inferences to the acquisition of numerical symbols. Lyons

and Beilock (2009) trained adult participants to associate approximate quantities

of dots (presented too quickly to count) with a novel set of abstract figures. Each

figure was repeatedly paired with a given quantity. Participants were instructed to

learn these pairings as well as they could. Participants were then tested on their abil-

ity to perform pairwise numerical judgments using the newly learned set of novel

numerical “symbols” (ie, absent any other numerical cues), tested on their ability

to reconstruct the symbols’ global order (ie, arrange the full set of symbols in
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increasing order), and finally probed for any strategies they might have employed.

Participants who reported using an ordinal strategyh performed better not only on the

global ordering task, but also on the pairwise numerical tasks. Crucially, these par-

ticipants performed no better on numerical tasks involving strictly nonsymbolic

magnitudes (dot arrays) or overlearned number symbols (Indo-Arabic numerals).

In other words, the focus on ordinal information was particularly useful specifically

for the acquisition of number symbols. Using a similar training paradigm in an fMRI

experiment, Lyons and Ansari (2009) demonstrated that a participant’s postscan ap-

titude for reconstructing the symbols’ global order was related to greater dissociation

(with training) of neural activity in bilateral IPS on tasks that tested numerical

comparison vs visual recognition. Furthermore, Merkley et al. (in press) directly con-

trasted the use of ordinal and cardinal information in learning a novel set of symbols.

Half of adult participants were given only ordinal information (the relative order of

the symbols), and the other half were given only cardinal information (participants

learned to associate an approximate magnitude with a given symbol, presented in

random order, similar to Lyons and Beilock earlier). Those given ordinal information

significantly outperformed those given cardinal information in a standard compari-

son task (greater or less than the middle symbol) using the novel symbols. Indeed,

using a similar novel-symbol mapping paradigm, Merkley (2015) showed that

6-year-old children could learn to use the symbols in a numerical context

(eg, compare which of two is numerically greater) only if they were given ordinal

in addition to cardinal information. That is children given only cardinal information

were at chance on all tasks, whereas those given both ordinal and cardinal informa-

tion were significantly above chance. Taken together, these results suggest that

ordinality may play a key role in our increasing reliance on symbolic representations

for understanding and manipulating quantities over the course of development and

learning.

Consistent with this idea, Lyons et al. (2014) showed that in Grades 1 and 2, basic

cardinal processing of number symbols captured more unique variance in Dutch chil-

dren’s arithmetic scores than any other numerical task (at least among the seven

others tested in that study, including ordinal processing). However, the unique var-

iance captured by ordinal processing of number symbols steadily increased such that

by Grade 6, it captured significantly more variance than any of the other seven nu-

merical tasks. Consistent with this developmental trend, Vogel et al. (2015) showed

that, in Grade 1 children, distance effects from a numerical comparison task pre-

dicted arithmetic scores, but distance effects from a numerical ordering task did

not. Examining a set of adult participants, Lyons and Beilock (2011) showed that

including symbolic numerical ordering performance (a combined measure of re-

sponse times and error rates) in a regression model completely accounted for the

hInterestingly, these participants also tended to be higher in WM capacity. Examining the other end of

the spectrum, recent work indicates that deficits in WM for serial-order information may underlie nu-

merical deficits—such as developmental dyscalculia—more broadly (Attout and Majerus, 2015;

Attout et al., 2015). We return to the topic of WM in ordinal processing in the next section.
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variance in complex mental arithmetic scores captured by both symbolic and non-

symbolic numerical comparison tasks (better ordering predicted better arithmetic

performance). However, Goffin and Ansari (2016) showed that symbolic ordering

and comparison distance effects in adults each captured unique variance in arith-

metic scores. This suggests that cardinal processing of number symbols may retain

an important role in more sophisticated numerical skills even with the growing role

of ordinal processing. Interestingly, both Vogel et al. (2015) and Goffin and Ansari

(2016) showed no relation between symbolic ordering and comparison distance ef-

fects. As noted in an earlier section, this underscores a likely dissociation between

ordinal and cardinal processing, at least for symbolic numbers. In addition, both this

result and the changing contribution of ordinality to more complex math skills over

the course of development point to the multifaceted nature of number symbols

(Delazer and Butterworth, 1997).

4.3 SUMMARY
In sum, as we have argued throughout this paper, overlooking the contribution of

ordinality to how we process numbers is likely a major oversight. In a similar vein,

the data reviewed in this section also make it increasingly clear that ordinality is not a

unitary concept, but involves multiple representations, many of which go beyond

simple item–item associations, and appears to increase in relational complexity over

the course of developmental time. On the other hand, it is not entirely clear how each

of the different types of (especially numerical) ordinal associations is in fact pro-

cessed, providing a clear opportunity for future research. In the next section, we turn

to the various mechanisms by which ordinality is processed, and how these may

change over development as well.

5 MECHANISMS THAT SUPPORT NUMERICAL ORDINAL
PROCESSING
Thus far, we have reviewed how ordinality differs from cardinality, to what extent

numerical is distinct from nonnumerical ordinal processing, and how the multifac-

eted nature of ordinality emerges with development and learning. In the following

section, we examine several mechanisms that contribute to the various forms of nu-

merical ordinal processing (eg, symbolic vs nonsymbolic). We begin by returning to

the notion that magnitude or cardinal mechanisms play a role in certain types of or-

dinal processing. Next, we review a growing body of literature examining working

memory (WM) for serial-order information, which suggests that this capacity is not

necessarily specific to numerical information. We also examine how spatial mech-

anisms may interact with ordinal processing, especially in WM. Finally, we examine

more long-term mechanisms based on ordinal associations that may be especially

crucial for understanding how we process ordinality of number symbols. We argue

that the more general short-term mechanisms for processing order information
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interact with long-term memory networks that are more specific to numbers—

especially in the case of associative connections between number symbols. In

sum, however, the mechanisms for numerical ordinal processing remain relatively

underspecified, which provides ample opportunity for future research.

5.1 MAGNITUDE-BASED MECHANISMS
In an influential review, Marshuetz and Smith (2006) suggested that both magnitude

and associative (or retrieval-based) mechanisms play a role in ordinal processing.

Consistent with the notion that magnitude- or cardinal-based mechanisms play a role

in ordinal processing, we saw in a previous section on the distinction between ordinal

and cardinal processing that, while ordinal processing is unlikely to be reducible to

cardinal processing (especially in the case of number symbols), there are contexts in

which the two are closely intertwined. Botvinick and Watanabe (2007) formalized

the hypothetical connection between ordinal position and magnitude in a computa-

tional model in which representation of ordinal position in prefrontal cortex was

based on the conjunction of item and approximate magnitude information, suggest-

ing that ordinal position is derived at least in part from approximate magnitude rep-

resentation. One key feature of the model was that it relied on the assumption of

compressive magnitude scaling (decreasing precision as magnitude increased—a

key signature of nonsymbolic magnitude processing across species; Nieder, 2005;

see also Nieder and Dehaene, 2009). Consistent with this notion, Petrazzini et al.

(2015) recently found that guppies (Poecilia reticulata) are sensitive to ordinal po-

sition independent of (and may even supersede) spatial position. Performance when

the critical item was in the 5th position was worse than when it was in the 3rd po-

sition, suggesting a degradation in representation akin to compressive magnitude

scaling. Furthermore, Ninokura et al. (2003, 2004) demonstrated that the presence

of neurons tuned to specific serial ordinal positions in lateral prefrontal cortex are

highly reminiscent of neurons that have been found to be tuned to nonsymbolic mag-

nitudes in prefrontal and parietal cortices (for a review, see Nieder, 2005; an ideal-

ized version of these curves can be seen in Fig. 3B).

One possibility is that a magnitude-based mechanism of assessing relative order

is the more general process, allowing for the broadest range of inputs. That is, unlike

the acquisition of symbolic associations, no special training or learning is required to

compare the relative magnitudes of various stimuli and infer their relative order

therefrom. In other words, one would expect the magnitude-based system of asses-

sing order to be quite general, in that it would apply to both nonsymbolic as well as

unfamiliar symbolic inputs (whereas processing of symbolic inputs might show id-

iosyncrasies specific to a given class on inputs—letters, numerals, months, etc.). This

view would account for certain disparities in the literature—such as the contextually

dependent nature of reverse distance effects and the seemingly contradictory find-

ings from Fias et al. (2007) and Zorzi et al. (2011). Moreover, as noted in a previous

section, Attout et al. (2014) found significant zero-order intercorrelations between

distance effects in letter and number ordinal judgments; but this relation was
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eliminated after controlling for luminance distance effects. Perhaps, these distance

effects were more indicative of a general short-term mechanism and less of a direct

overlap between long-term ordinal representations of letters and numbers.

Regardless, such an account must for the moment remain speculative. Future

work might test the notion by further examining in greater detail the interrelations

between different types of nonsymbolic ordinal stimuli (eg, luminance, size, dot ar-

rays, etc.) in terms of their various behavioral signatures, as well as distributed pat-

terns of neural activity, and so forth. In the next section, we turn to another general

mechanism (ie, one not specific to numerical or even magnitude inputs) that plays an

important role in how we process and maintain ordinal information—serial-

order WM.

5.2 SERIAL-ORDER WM
When holding a set of items in mind (eg, letters), it is generally recognized that mem-

ory for the relative order of the items (order working memory, OWM) is dissociable

from memory for the items themselves (item working memory, IWM; eg, McElree

and Dosher, 1993; Sternberg, 1966; for a review, see Marshuetz, 2005). Broadly

speaking, damage to frontal areas has been shown to compromise OWM, whereas

damage to temporal areas tends to compromise IWM (Kesner et al., 1994;

Milner, 1971). Accordingly, OWM tasks tend to activate prefrontal and parietal areas

more so than IWM tasks, and the latter tend to show greater activity in superior and

inferior temporal areas (Majerus et al., 2006; Marshuetz et al., 2000).

WM for ordinal information may play a key role in numerical processing. For

instance, Attout and Majerus (2015) showed that children with developmental dys-

calculia (a persistent deficit in numerical or mathematical processing; note that sim-

ilar results were also found for adult participants with mathematical difficulties in

Attout et al., 2015) performed significantly worse on an OWM but not an IWM task.

Furthermore, dyscalculics were significantly slower on a symbolic numerical order-

ing task than typically developing controls, but not on standard numerical compar-

ison tasks. Finally, OWM scores tended to correlate more strongly with a variety of

numerical tasks relative to IWM scores. Taken together, these results suggest that

WM—and in particular WM for ordinal information—may play a key role in deter-

mining who is more likely to fail vs succeed in acquiring critical numerical skills.

Consistent with this interpretation, in the previous section we saw that individuals

who reported using an ordinal strategy were more adept at learning to use a novel

set of symbols in numerical contexts (Lyons and Beilock, 2009). As it turns out, these

individuals also tended to be higher in WM capacity.i In other words, those higher in

WMwere more likely to adopt an ordinal strategy, which in turn was related to more

accurate acquisition of the numerical meaning of a set of novel symbols.

iOWM and IWM were not distinguished in that study. However, the critical outcome WM measure

(based on reading and operation-span tasks; Unsworth et al., 2005) reflected the accuracy with which

participants could recall letters in a specific order (under varying dual task conditions).
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At the neural level, overlap between numerical order judgments and WM for or-

der has also been found. Specifically, Attout et al. (2014) showed similar distance

effects for a letter comparison task (which comes later in the alphabet), a symbolic

numerical order task (does a given number come before/after a standard held in

mind), and a serial-order short-term memory task (is a two-item probe in the same

order as the same two items from a larger set held inWM). Furthermore, overlapping

distance effects for all three tasks were observed in the left IPS. This result is broadly

consistent with Fias et al. (2007), who showed common activation in bilateral IPS

for symbolic number and letter comparison tasks. In other words, the short-term

mechanism used for processing numerical order may be the same as that used for

processing serial order more generally. On the other hand, as noted in a previous sec-

tion, Zorzi et al. (2011) reanalyzed the Fias et al. results using a distributed pattern

analysis approach and found that the multivoxel patterns associated with letter and

number processing within the IPS could be successfully distinguished. One possibil-

ity is that there is a similar online or short-term process for ordinal information that is

general to the type of input (which might also account for similar distance effects in

certain contexts). However, at least for overlearned types of input (eg, letters and

numbers), a common short-term process may interact with distinct long-term mem-

ory representations.

5.3 SPATIAL MECHANISMS
A related mechanism worth considering is the possibility that one might be able to

visualize a limited amount of sequential information in a spatial configuration—for

instance with earlier items on the left and later items on the right. There is evidence to

indicate the presence of systematic spatial biases when processing ordinal informa-

tion (Gevers et al., 2003, 2004). For example, individuals tend to respond faster with

their left hand to items that come earlier in an ordinal sequence (eg, months, days of

the week, numbers, and letters) and faster with their right hand to items that come

later in the sequence. Moreover, these biases may arise due to spatial organization

of both short-term ordinal processing (ie, serial-order WM; Abrahamse et al.,

2014; De Belder et al., 2015; Vandierendonck, 2015; van Dijck et al., 2013,

2014, 2015), as well as how we represent ordinal information in long-term memory

(von Hecker et al., 2015)—with recent evidence indicating the two sources of spatial

bias are dissociable; Ginsburg and Gevers, 2015). Spatial biases are even evident af-

ter ordinal training in humans with a novel set of arbitrary symbols (Van Opstal et al.,

2009). Indeed, as noted in the previous section, when both humans and other species

are trained to learn an arbitrary ordinal sequence by means of feedback on adjacent

pairwise comparisons (eg, A!B, B!C, C!D, D!E), one routinely sees transfer

to nonadjacent pairs (eg, A!C, B!E; Treichler and Van Tilburg, 1996; Van

Opstal et al., 2008, 2009; von Fersen et al., 1991). In humans, this associative transfer

in ordinal learning is associated with changes in hippocampal and left angular gyrus

activity—both regions associated with memory as well as spatial processing

(Seghier, 2013; Vann and Albasser, 2011).
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These results are broadly consistent with the notion that ordinal associations pro-

vide a basic framework for tapping a more complex web of associations (Lyons and

Ansari, 2015; Nieder, 2009). Here we suggest that the ability to spatially visualize

ordinal structure may facilitate this process. Consistent with this notion, Lyons and

Ansari (2009) showed that, following training, those better able to reproduce the

global ordinal structure in a spatial layout were more likely to show increasing dis-

sociation between visual recognition and numerical processing of a novel set of sym-

bols in bilateral IPS. Moreover, as noted previously, Lyons and Beilock (2009) use a

similar training paradigm to show that those relying on an ordinal strategy (and

higher in WM) were more adept at learning to use the novel symbols in numerical

contexts—including the ability to spatially arrange the newly learned symbols in

terms of their global ordinal structure. Interestingly, those who succeeded most at

this latter task showed an “outside-in” pattern of performance, with the highest ac-

curacy at the endpoints and the lowest accuracy in the middle points (for a similar

result in children, see Merkley, 2015). Such a pattern is similar to what one finds in

multiitem ordinal comparisons (eg, Jou, 1997, 2003). For instance, one is shown a

horizontal array of three numbers presented in a random order; on a given trial,

one is asked to identify the location of, say, the “smallest” number. On the other tri-

als, one is asked to find the “middle” or “largest” number. Note that one must first

determine the global order of the set to determine which number matches the target

criterion (a new random set is generated for each trial) to complete the task. Regard-

less of spatial position on the screen, one tends to find the “endpoints” (the smallest

or the largest numbers) fastest, and search times systematically increase as one pro-

gresses inward, with the longest response times arising for the middle number (sim-

ilar results are found for 5-item sets, and for sets involving letters).j Fig. 3C visualizes

this overrepresentation of the reference or endpoints in an ordered sequence. This

suggests the importance of identifying boundary conditions or anchor points to better

structure one’s ordinal search process (Brannon et al., 2006; Trabasso and Riley,

1975). Given the intervening gaps, it would seem imprudent to use a verbal rehearsal

or direct item–item chaining to represent one’s ordinal representation when con-

structed in such an outside-in manner.

Instead, a spatial representation that allows for simultaneous representation of

endpoints with the possibility of filling in interior locations would seem more effi-

cient (Trabasso and Riley, 1975). The outside-in pattern observed for participants

who relied on ordinal strategies in Lyons and Beilock (2009) suggests they were con-

structing a representation of the numerical meanings of the novel-symbol set in a

similar, perhaps visuospatial manner. Note also that these participants tended to

be higher in WM capacity as well. Taken together with the preceding paragraph,

jA similar effect is found when participants are asked to rank various categories in terms of a specific

dimension (e.g., actors by age, animals by weight, countries by area, etc.). Performance is most accu-

rate for items at the endpoints (oldest/youngest, lightest/heaviest, largest/smallest, respectively; Kelley

et al., 2015). This is consistent with the notion of amore general mechanism—ie, one that is not specific

to numbers—as was also suggested in a previous section on whether numerical ordinality is “special.”
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it seems that ordinal processing both in long- and short-term memory may be spa-

tially organized. The ability to visualize the ordinal structure of multiple items at

once may also play a key role in constructing and inferring deeper associations be-

tween items, which may be key to understanding how we represent abstract number

symbols (Lyons and Ansari, 2015; Nieder, 2009).

5.4 THE MECHANISMS UNDERLYING ACQUISITION AND
ACCESS OF ORDINAL ASSOCIATIONS
For overlearned symbolic representations with a strong ordinal component, one

would expect to find distinct associative networks for different types of symbolic

stimuli, such as letters, numbers, etc. These long-term associations might facilitate

access to positional information, and so trump other slower, if more general, mech-

anisms of assessing order (Logan and Cowan, 1984). As has been discussed earlier,

classical distance effects are typically reversed when making ordinal judgments over

correctly ordered number symbols (eg, one is faster to verify that 4-5-6 is in order

than 3-5-7; Franklin and Jonides, 2009; Franklin et al., 2009; Goffin and Ansari,

2016; Lyons and Beilock, 2013; Turconi et al., 2006). Moreover, rapid access to or-

dinal associations is present even in children who are only just starting their formal

math education and persists in a consistent manner thereafter. Lyons and Ansari

(2015) showed that children as young as 1st grade also show a reverse distance effect,

and that the magnitude of this effect remains relatively stable over at least grades

1–6. An important question, then, is what drives the acquisition of these ordinal as-

sociations in numbers?

One possible explanation is that these ordinal associations are the product of

highly routinized rehearsal of the count sequence. 4-5-6 is better rehearsed than

3-5-7, so one is faster and more accurate when verifying the former is in order. This

is certainly a plausible explanation, though it is worth noting that children can recite

the count-list prior to understanding of either the cardinal (Wynn, 1992) or ordinal

(Colom�e and Noël, 2012) meanings of those count words. Furthermore, Lyons and

Ansari (2015) found no relation between reverse distance effects and counting ability

in a sample of nearly 1500 children. The authors also found that the relation between

performance on ordinal judgments of items such as 4-5-6 and arithmetic scores could

not be accounted for by counting performance. In sum, though the role of counting in

numerical development certainly should not be discounted in general, it does not

seem to provide the key mechanism for understanding how ordinal associations be-

tween numbers symbols are processed.

Another possibility is that, through a variety of circumstances—not just

counting—one is likely to be highly familiar with ordered, adjacent integers (such

as 4-5-6). This increased familiarity could contribute to more rapid recognition of

these items (Saumier and Chertkow, 2002). For instance, LeFevre and Bisanz

(1986) found that ordinal verification performance was improved not only for adja-

cent sequences such as 4-5-6, but also for nonadjacent, but nevertheless highly fa-

miliar contexts, such as counting by fives: 5-10-15. In addition, Bourassa (2014)
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found that adults were faster to verify ordered sequences which completed a simple

addition problem (eg, 2-5-7, which could also be interpreted as the valid addition

equation: 2+5¼7) than nonordered presentations (eg, 5-7-2, where 5+7¼2 is

not a valid equation). On the other hand, ordered arithmetic sequences were not ver-

ified faster than ordered nonarithmetic sequences (eg, 3-5-7, 3-5-9), so it is unclear

precisely what degree of familiarity was at play. Furthermore, double-digit numbers

are encountered far less frequently than single-digit numbers (Dehaene and Mehler,

1992), making the former likely less familiar than the latter. And yet, Lyons and

Ansari (2015) found that reverse distance effects were roughly twice as large for

double-digit relative to single-digit numbers. This suggests that familiarity alone

is perhaps insufficient to explain reverse distance effects. Instead, it may be that or-

dinal associations tap a deeper, more complex web of associations that underpin the

abstract nature of number symbols (Lyons and Ansari, 2015; Nieder, 2009). Regard-

less, though the earlier discussion can help rule out several possibilities, the precise

mechanism(s) by which ordinal associations between number symbols are learned

and accessed remain unknown, and are therefore a promising candidate for future

research. Furthermore, it is unclear whether these associations are specific to a given

class of symbolic inputs—for instance, are the long-term associations for numerals

distinct from the networks of ordinal associations that link letters, months, and so on?

In the next section, we turn to the potential role that numerical ordinal processing—

and in particular acquisition of the ordinal associations among numbers discussed in

this section—play in the development of more sophisticated types of numerical pro-

cessing, such as complex mental arithmetic.

5.5 SUMMARY
In keeping with the broader notion that ordinality is multifaceted, it appears that sev-

eral different mechanisms contribute to how we process numerical ordinality. These

range from magnitude- or cardinality-based mechanisms, to WM for serial-order in-

formation (which in turn may rely heavily on spatial processes), to more long-term

mechanisms based on ordinal associations. We suggest that the more general short-

term mechanisms for processing order information interact with long-term memory

networks that are more specific to numbers—especially in the case of associative

connections between number symbols. In the next section, we extend this idea and

examine the extent towhich ordinal associations amongnumber symbolsmayprovide

a crucial foundation for more sophisticated forms of numerical processing.

6 ORDINALITY AND IMPLICATIONS FOR MORE COMPLEX
NUMERICAL PROCESSING
In this section, we bring together the different lines of evidence reviewed earlier and

consider them in the context of understanding how ordinality may contribute to

other, more sophisticated forms of numerical processing. Specifically, we saw that
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ordinality is a key aspect of how we process and understand numerical quantities

both symbolically and nonsymbolically. We also saw that ordinal processing of num-

ber symbols may differ in certain contexts where overlearned ordinal associations

may be relevant to the task (as in the case of reverse distance effects when making

ordinality judgments; Franklin and Jonides, 2009; Franklin et al., 2009; Goffin and

Ansari, 2016; Lyons and Beilock, 2013; Turconi et al., 2006). There is also evidence

to suggest that symbolic and nonsymbolic representations of number are dissimilar

more generally (eg, Lyons et al., 2012), and it is possible that access to ordinal

associations is key to understanding this difference (Nieder, 2009). Indeed, we

saw that individuals who were either instructed to focus on (Merkley, 2015;

Merkley et al., in press) or spontaneously focused on (Lyons and Beilock, 2009)

ordinal information acquired the numerical meaning of a novel set of symbols more

accurately, and their numerical- and recognition-based processing of the novel sym-

bols was more dissociable (Lyons and Ansari, 2009). Taken together, these results

tempt one to hypothesize that ordinal associations among number symbols may

provide a crucial foundation for more sophisticated forms of numerical processing.

For this to be the case, however, the ordinal processing of number symbols should

therefore be predictive of more complex forms of numerical processing such as

complex mental arithmetic.

Consistent with this prediction, Knops and Willmes (2014) found overlapping

frontoparietal areas for symbolic numerical ordering judgments and mental arith-

metic, and the two tasks also showed correlated activity patterns across voxels within

these regions. At the behavioral level, Lyons and Beilock (2011) found that adult

performance on a basic ordinal verification task (are three numerals in the correct

left–right order?) captured about half the variance in a complex mental arithmetic

task (involving all four basic arithmetic operations with unfamiliar problems that of-

ten required carry/borrow operations over multiple digits). Importantly, the numeral

ordering task persisted in capturing about 30% of unique arithmetic variance, even

after controlling forWM capacity, as well as nonsymbolic number comparison, sym-

bolic number comparison, letter ordering, and numeral recognition performance (in-

deed, symbolic number ordering was the only significant unique numerical predictor

that remained). Goffin and Ansari (2016) replicated and extended this result. When

they examined overall performance (a measure combining accuracy and response

times), both symbolic number comparison and ordering showed significant zero-

order correlations with arithmetic performance, but only ordering captured unique

variance (controlling also for visuospatial short-term memory and inhibitory con-

trol). When Goffin and Ansari instead examined distance effects, both comparison

and ordering distance effects (canonical in the former case, reversed in the latter

case), each captured unique variance in arithmetic scores, which held even after con-

trolling for overall performance on the two tasks. Interestingly, overall ordering per-

formance also remained a significant predictor. As noted in the previous section,

reverse distance effects may index primarily the associative aspect of ordinal proces-

sing, so it is interesting to see that both reverse distance effects and overall ordering

symbolic numerical performance capture separate sources of arithmetic variance.
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This is broadly consistent with a multifaceted view of numerical ordinal processing,

and it suggests that these variegated facets may contribute differently to more sophis-

ticated forms of number processing, such as complex mental arithmetic.

Importantly, there also appears to be a critical developmental aspect to the rela-

tion between ordinality and arithmetic processing. As noted earlier, both Vogel et al.

(2015) and Lyons et al. (2014) found no relation between symbolic ordinal and ar-

ithmetic performance in 1st graders; however, even after controlling for symbolic

number comparison performance (and six other numerical tasks, as well as reading,

nonverbal intelligence, and basic processing speed), Lyons et al. found the strength

of this relation steadily increased starting in 2nd grade, such that it was the strongest

numerical predictor by grade 6. That said, from these data alone, it is unclear whether

this developmental shift is due to a change in how ordinality of number symbols is

processed or a change in how children do arithmetic.

To address this issue, Lyons and Ansari (2015) showed that reverse distance ef-

fects obtained (and remained relatively consistent) in all grades 1–6. Crucially, re-
verse distance effects were driven in large part by highly efficient performance on

increasing, numerically adjacent ordering trials (eg, 2-3-4, 4-5-6, 6-7-8). In this re-

spect, Lyons and Ansari (2015) found that performance on just the numerically ad-

jacent trials in the stimulus set all but completely accounted for the ordering result in

Lyons et al. (2014). That is to say, these trials accounted for more unique variance

than any other ordering trial type, and when performance on just these trials was

substituted for overall ordering performance in the main regression model from

Lyons et al. (2014) results were nearly identical. Note that these results also included

the developmental shift discussed earlier. In sum, the increasing, numerically adja-

cent trials were processed similarly across grades (in terms of reverse distance ef-

fects), these trials were driving much of the relation with arithmetic, and this

relation changed over development. Together, these results imply it is in fact how

children do arithmetic that is changing. In particular, older children increasingly

rely on retrieval strategies (eg, Imbo and Vandierendonck, 2007, 2008), so it seems

plausible that the ordering task is an index of the associations which enable

efficient retrieval of numerical relations in an arithmetic context. More broadly, this

view is consistent with the notion that more sophisticated numerical processing is

increasingly reliant upon a rich semantic network of numerical associations

(eg, Fig. 3A). It is perhaps for this reason that one sees an increasingly strong relation

between symbolic numerical ordering and arithmetic performance. Indeed, as an

extension of this hypothesis, LeFevre and Bisanz (1986; see also Bourassa (2014)

for a similar result) showed in adults that performance on patterned but slightly less

familiar (eg, 2-4-6, 3-6-9) ordering trials best discriminated between individuals with

high and low math skills. Note this is in contrast to children—where the presumably

more familiar adjacent patters (eg, 3-4-5, 5-6-7) best predicted children’s arithmetic

scores. Presumably, it is these deeper, nonadjacent associations that become increas-

ingly relevant as adults begin to deal with ever more sophisticated forms of

mathematics.
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6.1 LIMITATIONS
It is important to point out that much of the evidence discussed earlier is largely based

on correlational studies. Park and Brannon (2013, 2014) trained adult participants on

a symbolic number ordering task and participants tended to show onlymarginal gains

on a symbolic mental arithmetic task. Hence, the causal role of ordinal processing in

the development of arithmetic skills should be treated with caution. More generally,

it is crucial to make a distinction between a task meant to measure or be an index of

some underlying process, and the process itself. To cure a fever, one does not build a

more precise thermometer; and by extension, if one demonstrated that using a more

precise thermometer indeed failed to reduce one’s fever, it would be rather rash to

conclude ambient bodily temperature is irrelevant to one’s health. Our assertion here

is that one’s ability to access ordinal associations between symbolic numbers is an

index of a complex network of semantic associations between numbers. Simply hav-

ing participants complete dozens of multiple ordinal verification trials may be akin to

trying to build a more precise thermometer to cure a fever. Instead, we argue, the

underlying network of associations needs to be expanded and strengthened. Of

course, this conclusionmust for the moment remain speculative. Regardless, unpack-

ing the precise contributions of numerical ordinal processing to other, more sophis-

ticated types of numerical and mathematical processing is an area rich with major

potential theoretical as well as practical implications.

7 CONCLUSIONS
Scientists from several different fields (cognitive science, psychology, neuroscience,

and linguistics) have used a variety of methods to study how we represent numerical

information (both in symbolic and nonsymbolic formats). The study of numerical

and mathematical processing is a thriving field, as is aptly illustrated by the contri-

butions in this volume. This research has led to significant advances in our under-

standing of how numbers are processed and represented. However, the majority

of this research has focused on the “how many” question (understanding how the

cardinality of numbers is processed and represented). In contrast to the predominant

focus on how the cardinality of numbers is represented and processed, there has been

comparatively less work on the representation and processing of numerical order.

This state-of-the-art, however, is changing. In recent years, a growing body of ev-

idence from both behavioral and neuroimaging studies with nonhuman primates, hu-

man children, and adults has begun to more systematically investigate numerical order

processing from a wide range of different theoretical approaches, using a variety of

methodological toolkits. In an effort to summarize and integrate this evidence, the

aim of the present review was to provide a comprehensive discussion of what is cur-

rently known about the processing and representation of numerical order and what fu-

ture directions in research on numerical order may be particularly fruitful.
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As should be evident from the earlier review, one overarching conclusion is that

numerical order processing is complex and multifaceted. Specifically, it is becoming

increasingly clear that numerical order processing is, at least partially, distinct from

the processing of cardinality: It follows different developmental trajectories, is

uniquely associated with individual differences in higher-level numerical and math-

ematical skills, and is underpinned by different neural mechanisms. This conclusion

demonstrates that the study of numerical order processing should be given greater

attention. Furthermore, there are clearly relationships between the processing of

numerical and nonnumerical order at both behavioral and brain levels of analyses;

the mechanisms for processing ordinal sequences in other domains very likely play

a role in numerical ordinal processing as well. However, the evidence remains

incomplete as to whether numerical ordinal processing is completely reducible to

these domain- or stimulus-general processes. Put differently, we do not yet know

whether numerical order is “merely” the artifact of other types of ordinal processing

but instead possesses unique features. Here, we have suggested answering this

question may depend critically on the type of mechanism—for instance short- vs

long-term memory—in question. Regardless, it is clear that further research is

needed to either identify the more general ordinal processes that contribute to numer-

ical ordering and what, if any, features may distinguish numerical from other types of

ordinal processing. Importantly, it is also clear that numerical order processing

differs between symbolic and nonsymbolic processing and thereby suggests that

numerical order processing may be a key differentiator between the two.

This leads to the suggestion—put forward in the present review—that numerical

order allows for symbolic representation of number to be less tied to the cardinalities

they represent. Instead, numerical order provides a means by which ordinal represen-

tations go beyond item–item association and toward a network of associative links

that allow humans to process numbers for which they have no perceptual experience

of their cardinal values (eg, a billion). In this way, symbolic numerical order proces-

sing may reveal much about how symbolic representations of number have both en-

abled humans to outstrip the numerical abilities of nonhuman primates, and

contributed to the complexity of mathematical thinking.
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