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Abstract

Math relies on mastery and integration of a wide range of simpler numerical processes and concepts. Recent work has identified
several numerical competencies that predict variation in math ability. We examined the unique relations between eight basic
numerical skills and early arithmetic ability in a large sample (N = 1391) of children across grades 1–6. In grades 1–2,
children’s ability to judge the relative magnitude of numerical symbols was most predictive of early arithmetic skills. The unique
contribution of children’s ability to assess ordinality in numerical symbols steadily increased across grades, overtaking all other
predictors by grade 6. We found no evidence that children’s ability to judge the relative magnitude of approximate, nonsymbolic
numbers was uniquely predictive of arithmetic ability at any grade. Overall, symbolic number processing was more predictive of
arithmetic ability than nonsymbolic number processing, though the relative importance of symbolic number ability appears to
shift from cardinal to ordinal processing.

Introduction

Math, being a complex skill, relies on mastery and
integration of a wide range of simpler numerical facts
and concepts – both innate and acquired (Butterworth,
1999; Dehaene, 1997; Geary, 2013). It is thus crucial for
both practical and theoretical reasons to identify the
basic skills that are most predictive of success in math
during the early school years.
Recent research has identified a range of basic

numerical competencies (e.g. determining which of two
quantities is numerically larger; see also Table 1) that
predict individual differences in mathematical skills
(Bonny & Lourenco, 2013; Booth & Siegler, 2006,
2008; Castronovo & G€obel, 2012; De Smedt, Verschaffel
& Ghesqui�ere, 2009; Desoete, Ceulemans, De Weerdt &
Pieters, 2012; Durand, Hulme, Larkin & Snowling, 2005;
Fuhs & McNeil, 2013; Geary, Hoard, Nugent & Bailey,
2013; Gilmore, McCarthy & Spelke, 2010; Gunderson,
Ramirez, Beilock & Levine, 2012; Halberda, Mazzocco
& Feigenson, 2008; Halberda, Ly, Wilmer, Naiman &
Germine, 2012; Holloway & Ansari, 2009; Kolk-
man, Kroesbergen & Leseman, 2013; Jordan, Kaplan,

Ramineni & Locuniak, 2009; Jordan, Glutting & Ramin-
eni, 2010; Libertus, Feigenson & Halberda, 2011; Liber-
tus, Odic & Halberda, 2012; Libertus, Feigenson &
Halberda, 2013; Lonnemanna, Linkersd€orfera, Hasselh-
orna & Lindberg, 2011; Lourenco, Bonny, Fernandez &
Rao, 2012; Lyons & Beilock, 2011; Mazzocco, Feigenson
& Halberda, 2011a, 2011b; Mundy & Gilmore, 2009;
Piazza, Facoetti, Trussardi, Berteletti, Conte, Lucangeli,
Dehaene & Zorzi, 2010; Price, Palmer, Battista & Ansari,
2012; Reeve, Reynolds, Humberstone & Butterworth,
2012; Reigosa-Crespo, Vald�es-Sosa, Butterworth,
Est�evez, Rodr�ıguez, Santos, Torres, Su�arez & Lage, 2012;
Sasanguie, De Smedt, Defever & Reynvoet, 2012; Sasan-
guie, G€obel, Moll, Smets & Reynvoet, 2013b; Sasanguie,
Defever, Maertens &Reynvoet, 2013a). Discovery of such
predictors has often been followed by a flurry of claims
and counter-claims regarding their relative importance
and primacy.
Such divergence and contradiction in the current

literature may be due to the fact that the relative
importance of different predictors varies as a function of
when in development they are assessed. For example, one
skill might be of particular importance when children are
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first learning addition facts in first and second grade
while, in subsequent years, other skills may be more
important for consolidating and linking these facts to one
another to form amore mature and flexible understanding
of arithmetic. The majority of previous studies have
focused on relatively limited age ranges or on only one
or two basic numerical skills, leading to an incho-
ate patchwork of results from varying ages, measures
and sample sizes. The issue is further complicated by the
fact that many of these basic skills tend to be strongly
related to one another, and studies have differed on
whether they assessed the unique contribution of a given
skill.

To provide a systematic investigation of the role of
basic number skills in children’s arithmetic competence
we assessed children’s performance on eight different
basic numerical tasks and three non-numerical control
tasks that have been identified as predictive of children’s
early arithmetic skills (see Table 1 for a brief summary of
tasks). We collected data from 1391 children in grades
1–6 (> 200 children in each grade). This approach
allowed us to assess the unique contributions of each
basic numerical skill within each grade, as well as across
all six education levels. Our aim was thus to characterize
both the forest and the trees when examining the relative
importance – at different developmental time-points – of

a range of basic numerical skills for early math educa-
tion. Further, by focusing on unique (instead of zero-
order) contributions to arithmetic performance, we can
identify the truly fundamental numerical building blocks
of early math, rather than simply highlighting relatively
incidental predictors that do not bear any specific
relation to early math ability.

Methods

Participants

The data collection protocol was approved by the ethics
review board at Maastricht University. Data were
collected from 1463 Dutch children in grades 1–6.
Chance performance is difficult to interpret, so we
removed children who performed at chance on any of the
tasks for which chance could be defined (> 49% error
rate on any of the binary forced-choice numerical tasks:
NumComp, DotComp, NumOrd, VisAud, ObjMatch; >
24% error rate on the four-choice StimResp task). This
removed 37 children from the analysis (2.53%). To
remove outliers, we checked whether a child’s score on a
given task was more or less than 4 standard deviations
from the mean for that task in that grade. If this was the
case on any task, the child was removed from further
analysis. This removed 35 additional children from the
analysis (2.39%). In sum, 72 children (4.92%) were
removed from the dataset. The overall final sample size
was N = 1391 (722 female); grade 1 n = 208 (97 female),
grade 2 n = 201 (104 female), grade 3 n = 253 (133
female), grade 4 n = 252 (134 female), grade 5 n = 241
(126 female), grade 6 n = 236 (128 female).

Procedure

Children came from seven different primary schools in
the Netherlands. Parents could withhold consent by
returning the appropriate form. Trained project workers
administered all cognitive measures to each child sepa-
rately in a quiet room at school. All data were collected
in one session for grades 1–2, 5–6; data were collected in
two sessions that were never more than 5 days apart for
grades 3–4.

The nonverbal intelligence (Ravens) and mathematical
achievement (Tempo Test Automatiseren, TTA) tests
were paper-and-pencil tests. All other cognitive measures
were computerized. In all tasks, children were instructed
to respond as quickly and accurately as possible. Several
practice trials (3–6) were given for each of the numerical
tasks. No feedback was given for any of the tasks during
the main experimental trials.

Table 1 The tasks collected and a brief description of each

Task Brief description

Arithmetic Standardized measure of mental arithmetic ability
(addition & subtraction).

Counting Count objects as quickly and accurately as possible
DotComp Compare two arrays of dots to determine which

contains more dots
DotEst Give a verbal (symbolic) estimate for the number of

dots in a briefly presented array
NumComp Compare two symbolic numbers to determine which

represents the larger quantity
NumLine Mark on a horizontal line labeled 0–100 where a

symbolic number should fall
NumOrd Determine whether three symbolic numbers are in

numerically increasing (left–right) order
ObjMatch Determine which of two sets of household objects

matches the number of objects in a third set
(sets varied in object composition; counting was
permitted)

VisAud Determine if a spoken number word and an Arabic
numeral match

Ravens Standardized measure of nonverbal (spatial)
reasoning/IQ

Reading Standardized measure of (Dutch) reading ability
StimResp Press one of four marked squares as quickly as

possible

Note: Task abbreviations in Table 1 are used in the remaining tables
and in Figure 1.
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Reading, Ravens and Arithmetic were each scored as
the total number of correctly completed items. See the
section on Task Scoring below for scoring details on the
remaining tasks.

Tasks

Mental arithmetic (Arithmetic)

The Arithmetic task was operationalized using the
standardized TempoTest Automatiseren (TTA) of basic
arithmetic ability (De Vos, 2010). Worksheets containing
50 addition and 50 subtraction operations were admin-
istered to children in all grades. Children were instructed
to mentally calculate as many operations as possible
within 2 minutes per worksheet. Arithmetic scores were
the total number of correctly answered problems across
both worksheets. Reported reliability for this task is high
(.92; Janssen, Verhelst, Engelen & Scheltens, 2010).

Numeral ordering (NumOrd)

In the NumOrd task, children saw three numbers
presented horizontally as Arabic numerals. Half the
time, the three numbers were all in numerically increas-
ing order (left–right). In the remaining trials, numbers
were either in decreasing or mixed order. Children were
instructed to push a button with their left hand if the
numbers were all increasing (‘in order’) or a button with
their right hand if they were not (‘not in order’). Stimuli
remained on the screen until the child responded. There
were 28 one-digit trials and 28 two-digit trials. The
distances between numbers were roughly evenly divided
across trials into distances of 1–3, where absolute
distance was always symmetrical around the median
number and distance for a given trial was calculated as
(max � min)/2. Note that first graders saw only one-digit
trials; results were highly similar whether we excluded
two-digit trials in NumOrd scores for children in grades
2–6. Reliability on this task was high, for both one-digit
(a = .938) and two-digit trials (a = .960).

Numeral comparison (NumComp)

In the NumComp task, children saw two numbers
presented horizontally as Arabic numerals, and their
task was to decide which number represented the larger
quantity. Children saw 64 trials, 32 of which were one-
digit and 32 of which were two-digits. For both sizes,
ratios (R = min/max) fell into one of 4 ranges: R ≤ .5,
R = .5, .5 < R < .7, R ≥ .7, with eight trials in each
ratio-range at each size (one- versus two-digits). Stimuli

remained on the screen until the child responded.
Reliability on this task was high: a = .977.

Dot comparison (DotComp)

In the DotComp task, children saw two arrays of dots –
one on either side of the screen – and their task was to
decide which array contained more dots. The quantities
and ratios used were the same as those in the NumComp
task. Stimuli remained on the screen until the child
responded (note that strong relations between perfor-
mance on this task and math ability have been reported
previously when allowing for self-paced responses; e.g.
Piazza et al., 2010). Reliability on this task was high:
a = .955.
Due to geometric constraints, within a given trial all

versions of a dot-comparison task will allow for at least
some non-numerical parameters (such as area, perimeter,
density, etc.) to covary with number. This problem is
compounded by the fact that participants switch the
parameters they rely upon from trial to trial (Gebuis &
Reynvoet, 2012), and that there is a linear relationship
between the number of parameters either incongruent or
congruent with number and the magnitude of the
congruency effect. Therefore, paradigms that rely solely
on changing the congruency of parameters with number
between trials may fail to bias participants away from
relying on non-numerical parameters. In the current
dataset, overall area and average individual dot-size were
always incongruent with number (the array with fewer
dots had greater overall area and larger average dot-size;
individual dot-sizes varied randomly). In other words,
the non-numerical strategy available in our study was the
more difficult one because relying on it would force
children to essentially focus on non-numerical variables
that were incongruent with the task goal. Our paradigm
therefore relied on the assumption that children would
be more likely to rely on the relevant parameter
(numerosity) that was congruent with the task goal
(identify the numerically larger array) than one that was
incongruent (smaller overall area and/or individual dot-
size). We saw this assumption as less problematic than
the assumption (demonstrated to be highly questionable
by Gebuis & Reynvoet) that participants would not
switch between the parameters across trials.
Note also that recent work has shown that perfor-

mance on dot-comparison trials where overall area and
average individual dots size are incongruent with number
(as was the case in our study) is more predictive of math
achievement than congruent trials (Gilmore, Attridge,
Clayton, Cragg, Johnson, Marlow, Simms & Inglis,
2013). This may have contributed to the relatively large
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zero-order effect we observed between DotComp and
Arithmetic (Table 3; note that this relation remained
highly significant even after controlling for non-numer-
ical factors, Ravens, Reading, StimResp, Age: p < .001);
however, it is unclear how it explains the null result
observed when controlling for numerical factors
(Tables 5–6, Figure 1).

Object matching (ObjMatch)

In the ObjMatch task, children were shown a sample
array of common objects (various animals and pieces of
fruit) and two test arrays of objects below the sample
array. The children’s task was to determine whether the
left or right test array contained the same number of
objects as the sample array. Children saw 45 trials in
total. On 15 trials, all objects in all arrays were the same.
On 15 trials, each of the three arrays contained different
types of objects, but the objects within a given array were
all the same. On 15 trials, all arrays contained a mixture
of object-types. The number of objects in the arrays
ranged from 1 to 6, and the absolute numerical distance
between the two test arrays was 1 or 2. Stimuli remained
on the screen until the child responded. Reliability on
this task was high: a = .956.

Counting (Counting)

In the Counting task, children saw between 1 and 9 dots,
and their task was to count the number of dots on the
screen as quickly and accurately as possible. Children
were given five trials for each quantity. Trials were scored
as correct only if the child’s response was exactly correct.
Verbal responses were collected by the experimenter in
written fashion. Response times were estimated by
having the child press a button as they gave their verbal
response. Reliability on this task was high: a = .946.

Numberline estimation (NumLine)

In the NumLine task, children were shown a horizontal
line marked as 0 on the left end and 100 on the right end.
On each trial, they were shown an Arabic numeral
(centrally presented above the numberline) in the range
3–96 (the number was presented verbally at the same
time through a pair of headphones). The children’s task
was to click (with a computer mouse) on the numberline
where they thought the target number should be placed
in terms of the relative quantity it represented. Stimuli
remained on the screen until the child responded.
Children saw 26 total trials. Reliability on this task was
high: a = .940.

Dot quantity estimation (DotEst)

In the DotEst task, children were shown a single array of
dots presented too quickly (750 msec) for the dots to be
counted individually, which was followed by a visual
mask. The mask remained on the screen until the child
responded. Children’s task was to estimate the number
of dots in the array by giving a verbal response. These
responses were manually recorded by the experimenter.
Children completed a total of 84 trials (12 each for
quantities 1–4, 7, 11, 16). Note that if only trials with
target values 4, 7, 11 and 16 were used, results
were highly similar. Reliability on this task was good:
a = .824.

Visual-audio matching (VisAud)

In the VisAud task, children heard a number word
spoken aloud and immediately thereafter saw an Arabic
numeral on the screen. Note that while this task does not
have major precedent in the numerical cognition litera-
ture, audiovisual integration has been shown to be highly
important in the acquisition of another symbolically
mediated complex skill: reading (Blomert, 2011; Blomert
& Froyen, 2010). The children’s task was to determine
whether the numeral and spoken number word were the
same quantity (by pressing one of two buttons – left
indicating ‘same’ and right indicating ‘different’).
Stimuli remained on the screen until the child responded.
Children completed 64 trials, 32 in the one-digit range
and 32 in the two-digit range. In non-matching cases,
both numbers were within the same decade. The ratio
between numbers in non-matching cases ranged between
.25 and .89. Reliability on this task was high: a = .973.

Nonverbal intelligence (Ravens)

The Ravens task comprised a battery of colored pro-
gressive matrices. This is a normed, untimed, visuo-
spatial reasoning test for children (Raven, Court &
Raven, 1995). Children saw a colored pattern and were
asked to select the missing piece out of six choices.
Children completed 36 items; a child’s score was the
total number of correctly completed items. For the
Dutch version of this task, Van Bon (1986) reported
reliabilities of .80 or higher.

Reading ability (Reading)

The Reading task was part of the normed Maastricht
Dyslexia Differential Diagnosis battery (Blomert & Vaes-
sen, 2009), and comprised three subtasks. Subtasks
contained high-frequency words, low-frequency words,
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or pseudo-words. In each subtask, participants saw a
series of up to five screens (advanced by the experi-
menter), each with up to 15 items (75 total items per
task). The children’s task was to read each item aloud
as quickly and accurately as possible. An experimenter
manually marked the accuracy of each item. A child’s
score on a subtask was the total number of correctly
read items in 30 seconds. Scores on the three subtasks
were summed to form a child’s final Reading score.
Reported test–retest reliability for this task is high (.95;
Blomert & Vaessen, 2009).

Basic stimulus–response processing (StimResp)

In the StimResp task, children saw four horizontally
arranged boxes on the screen. On each of 20 trials, a fish
appeared in one of the four boxes. Children’s task was to
press the corresponding key on the response box as
quickly and accurately as possible. Note that chance
performance on this task was 25% errors, as opposed to
50% errors in the various binary response tasks described
above. Stimuli remained on the screen until the
child responded. Reliability on this task was high: a =
.944.

Task scoring

Our aim was to systematically assess the unique predic-
tive power of our tasks as simultaneous predictors in a
multiple regression model. To ensure compatibility, we
thus used a measure of performance that was common to
as many of the tasks as possible. For NumComp,
DotComp, NumOrd, VisAud, ObjMatch, Counting,
and StimResp tasks, we used a composite of error rates
and reaction times (correct trials only). Combining
measures provided a more complete picture of overall
performance in each task, it reduced the number of
models and statistical tests needed for the analysis as a
whole, thus reducing the risk of false-positives, and it
implicitly controlled for any variation in speed–accuracy
trade-offs across tasks. Measures were combined accord-
ing to the formula: P = RT(1 + 2ER), where a higher
value indicates worse performance. Error rates were
multiplied by 2 because most tasks were binary forced-
choice (ER = .5 indicates chance). In essence, one can
interpret this measure as reaction times (msec) after they
have been penalized for inaccurate performance. The
scale runs between a child’s actual average response time
(where P = RT) for perfectly accurate performance (0%
errors) and double that value (P = 2RT) for chance
performance (50% errors). Note that this method is quite
similar to inverse efficiency (I = RT/Accuracy), with the

exception that accuracy is nonlinearly weighted in the
case of inverse efficiency (changes in accuracy rates lead
to greater change in I the further accuracy rates get from
1). Further, we did not opt to standardize RT and ER
and average them together for the simple reason that the
method adopted here preserves developmental trends
and differences across tasks in a slightly more transpar-
ent way (see, e.g. Table 2). Because the dependent
measure (Arithmetic) was scored with a higher value
indicating better performance, for ease of interpretation,
performance scores (P) were multiplied by �1 before
being entered into regression analyses, so that a positive
relation meant better performance on a given measure
was related to better Arithmetic performance. For tasks
where a composite measure was used, mean response
times and error rates can be found in the Supporting
Information (Table S1).
DotEst and NumLine involved many trials on

which exactly correct answers are expected to be quite
rare, rendering traditional error rates essentially
uninterpretable. We instead used percent absolute

errors:PAE ¼ jEst�Targetj
Scale , where Est is the child’s esti-

mate, Target is the target number, and Scale is the scale
or range of target numbers. For the NumLine task, Scale
was 100, and for DotEst it was 16. For a given child,
final scores were computed by averaging across all trials,
with a higher number indicating worse performance.
Because the dependent measure (Arithmetic) was scored
with a higher value indicating better performance,
DotEst and NumLine scores were multiplied by �1
before being entered into regression analyses, so that a
positive relation meant that better performance was
related to better Arithmetic performance.

Age

To control for age variation within each grade, we
included each child’s age (fractional years – expressed in
true annual calendar cycles from the child’s birthday to
the testing date) as a predictor in the model. We mean-
centered Age within each grade to eliminate the corre-
lation between Age and Grade while preserving Age
variation within each grade.

Reliability

Reliability for numerical tasks was computed across the
all grades (N = 1391) using all trials in a given task via
Cronbach’s a. For tasks where we used a composite
measure, reliability was computed over composite scores
such that response times were doubled for trials where a
child committed an error.
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Results

Table 2 shows mean performance levels for each of the
measures that were entered into the initial regression
model (these are computed before flipping (�1x) rele-
vant variables; hence, a higher number indicates worse
performance, with the exception of Arithmetic, Reading,
and Ravens). Note that there was a significant effect of
Grade for each variable (all ps < .001), such that
performance improved as grade increased. The bottom
row of Table 2 shows mean Age for each grade.

Table 3 shows zero-order correlations between each
continuous predictor and Arithmetic scores; this is shown
both for the overall sample (N = 1391) and for each grade
separately. Given the large sample size, many of the
p-values are vanishingly small; thus effect-sizes (Cohen’s
ds) are also given in Table 3. (For correlations between
numerical tasks, see Supporting Information, Table S2).

Model selection

We used performance on the eight basic numerical and
three non-numerical tasks to predict arithmetic scores.
Age (mean-centered within each grade) was included as a
control measure. We also assessed whether each of these
12 predictors interacted with Grade (6 levels: 1–6).
Interaction terms tested for developmental effects by
asking whether the slope of the relation between perfor-
mance on a given task (or age) and Arithmetic perfor-
mance varied as a function of Grade, controlling for all
other effects. This yielded an initial set of 25 predictors
(12 continuous main effects, 1 discrete main effect

(Grade) and 12 terms whereby each continuous predictor
interacted with Grade).

Our aim was an unbiased estimate of the unique
Arithmetic variance accounted for by each predictor, so
we began by including all 25 predictors in the initial
model and then worked backwards in stepwise fashion
to find a more parsimonious model fit. Initial-model
adjusted R2 �ðRÞ2 was high at .8058; to avoid over-
fitting, we then removed the least significant predictor
from the model in step-wise fashion until all predictors
were at least significant (p < .05). (See Table 4 for
details of the model-reduction process.) Model reduc-
tion resulted in the complete removal of dot-compari-
son, visual-audio matching, stimulus–response
processing, and a decrease of only .0009 from the initial
�ðRÞ2. Note that the last predictor removed was the main
effect of dot-comparison. Due to wide interest in this
task generated in the recent literature, we elected to
retain this predictor in the final model (final �ðRÞ2 was
instead reduced by .0008 from initial model fit). The
final model is summarized in Table 5. Eight of the 12
interaction terms were removed from the initial model.
The four tasks that did show an interaction with Grade
were all number-processing tasks.

To examine developmental trends, we assessed the
unique predictive capacity of the 10 continuous predictors
retained in the final model (see Table 5) on Arithmetic at
each grade (i.e. a separate multiple regression model was
run at each grade). Partial correlations (and correspond-
ing Cohen’s ds) are shown in Table 5. Unique effect-sizes
across grades for the seven numerical tasks in the final
model are represented in Figure 1.

Table 2 Performance means for each task in the model at each grade

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6

N 208 201 253 252 241 246
Arithmetic 19.7 (.5) 42.2 (1.0) 53.8 (.8) 62.1 (.9) 69.9 (.9) 76.2 (.9)
NumOrd 4945 (127) 3865 (99) 3013 (60) 2626 (54) 2225 (51) 1902 (44)
NumComp 1738 (29) 1290 (22) 1077 (13) 973 (13) 895 (11) 822 (11)
DotComp 1721 (31) 1425 (22) 1355 (22) 1203 (22) 1074 (19) 1037 (18)
ObjMatch 4979 (93) 3749 (69) 3289 (50) 2899 (44) 2558 (40) 2318 (35)
Counting 3665 (62) 2921 (45) 2595 (33) 2282 (32) 2100 (28) 1944 (27)
VisAud 1898 (28) 1422 (21) 1191 (16) 1031 (17) 922 (13) 833 (12)
DotEst 8.46 (0.20) 6.97 (0.17) 6.16 (0.13) 5.88 (0.12) 5.48 (0.11) 5.01 (0.11)
NumLine 14.20 (0.39) 7.47 (0.20) 5.39 (0.11) 4.90 (0.10) 4.52 (0.09) 4.31 (0.09)
Ravens 25.6 (.3) 28.6 (.3) 29.7 (.2) 30.2 (.2) 31.0 (.2) 31.7 (.2)
Reading 49.9 (1.8) 93.7 (1.7) 110.5 (1.3) 124.3 (1.3) 129.1 (1.4) 137.3 (1.3)
StimResp 970 (12) 846 (10) 741 (8) 676 (9) 624 (7) 552 (6)
Age 7.06 (.03) 8.12 (.04) 9.15 (.03) 10.33 (.03) 11.09 (.04) 12.18 (.04)

Note: Values in parentheses are standard errors. For Arithmetic, Ravens and Reading scores, a higher number indicates higher performance. For
DotEst and NumLine, values are percent absolute error, so a lower number indicates more accurate performance. The remaining tasks show combined
performance (response times and error rates), where a lower number also indicates better performance (response times and error rates for these tasks
can be found in the Supporting Information Table S1). The bottom row of Table 2 gives the mean Age for each grade (in years). Note that in the
model, Age was mean-centered within each grade.
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Table 4 The progression of model reduction

Step Predictor removed p-value of removed predictor �ðRÞ2after predictor removed D �ðRÞ2 from init. model

Init. – – .805786 –
1 VisAud .641 .805577 �.000209

Grade 9 VisAud .207
2 Grade 9 DotComp .541 .805715 �.000071
3 StimResp .493 .805724 �.000063

Grade 9 StimResp .430
3 Grade 9 Age .358 .805650 �.000136
4 Grade 9 Reading .415 .805649 �.000138
5 Grade 9 DotEst .371 .805592 �.000194
6 Grade 9 Ravens .249 .805355 �.000431
7 Grade 3 NumComp .172 .804963 �.000824
8 DotComp .174 .804840 �.000946

Note: In steps 1 and 2, two predictors were removed: the main effect and the corresponding interaction term. The step producing the final model is
shown in bold. Abbreviations: Init.: Initial (Model), �ðRÞ2: adjusted �ðRÞ2.

Table 3 Zero-order relations between each of the continuous predictors and Arithmetic scores for all grades combined and for
each grade separately

All grades Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6

N 1391 208 201 253 252 241 236
NumOrd d 1.955 .328 .986 .914 1.121 1.115 1.320

r0 .699 .162 .442 .416 .489 .487 .551
p 2E-204 2E-02 5E-11 5E-12 2E-16 9E-16 4E-20

NumComp d 2.430 1.257 1.249 .922 .994 1.242 1.126
r0 .772 .532 .530 .419 .445 .528 .490
p 8E-276 1E-16 6E-16 4E-12 1E-13 1E-18 1E-15

DotComp d 1.331 .586 .561 .375 .290 .677 .536
r0 .554 .281 .270 .184 .143 .321 .259
p 1E-112 4E-05 1E-04 3E-03 2E-02 4E-07 6E-05

ObjMatch d 2.286 1.040 1.149 .933 1.126 1.365 1.194
r0 .753 .461 .498 .423 .491 .564 .512
p 2E-254 2E-12 5E-14 2E-12 1E-16 1E-21 3E-17

Counting d 2.138 .843 .795 .754 1.157 1.233 1.297
r0 .730 .388 .369 .353 .501 .525 .544
p 4E-232 7E-09 7E-08 8E-09 2E-17 2E-18 1E-19

DotEst d 1.161 .424 .605 .570 .704 .535 .413
r0 .502 .207 .290 .274 .332 .258 .202
p 1E-89 3E-03 3E-05 1E-05 7E-08 5E-05 2E-03

NumLine d 1.859 .864 .837 .484 .639 .653 .708
r0 .681 .397 .386 .235 .304 .311 .334
p 4E-190 3E-09 2E-08 2E-04 8E-07 9E-07 2E-07

VisAud d 2.281 .858 .500 .706 .780 .852 .899
r0 .752 .394 .242 .333 .364 .392 .410
p 1E-253 4E-09 5E-04 6E-08 3E-09 3E-10 5E-11

Ravens d 1.096 .584 .433 .594 .251 .430 .299
r0 .481 .280 .212 .285 .125 .210 .148
p 2E-81 4E-05 3E-03 4E-06 5E-02 1E-03 2E-02

Reading d 2.230 .696 .914 .458 .681 .622 .762
r0 .744 .329 .416 .223 .322 .297 .356
p 6E-246 1E-06 8E-10 3E-04 2E-07 3E-06 2E-08

StimResp d 1.832 .809 .515 .497 .564 .415 .469
r0 .675 .375 .249 .241 .272 .203 .228
p 6E-186 2E-08 4E-04 1E-04 1E-05 2E-03 4E-04

Age d �.200 .328 �.142 �.288 �.441 �.494 �.579
r0 �.099 .162 �.071 �.142 �.215 �.240 �.278
p 2E-04 2E-02 3E-01 2E-02 6E-04 2E-04 1E-05

Note: A positive correlation (and effect size) indicates that better performance on that task was related to better Arithmetic performance. Note that
Age was mean-centered at each grade. Abbreviations: d = effect size, r0 = zero-order r-value, p = p-value.
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Dot-comparison

It may be argued that including theDotEst andObjMatch
tasks in the model biased us toward a null effect for the

DotComp task because all three tasks tap one’s approx-
imate, nonsymbolic representation of numerosity. First, it
is worth pointing out that we also included several
symbolic number tasks, and yet the NumComp task
(and several other symbolic tasks) showed unique predic-
tive variance. This implies that the objection is itself
biased. Nevertheless, we re-ran the model selection pro-
cess, but this time omitting the DotEst and ObjMatch
tasks (and their corresponding interaction terms) to see if
this improved the unique predictive capacity of the
DotComp task. It did not. In this case, the DotComp
task was in fact the first predictor removed during model
selection (p = .626; Grade 9 DotComp: p = .447).
Removing DotComp and the corresponding interaction
term slightly increasedoverallmodel fit from �ðRÞ2 = .79933
to �ðRÞ2= .79941. The unique contribution of DotComp
was not significant at any grade (all ps > .15). Thus, the
failure of the DotComp task – a task routinely used to
estimate approximate number acuity – to predict unique
variance in arithmetic ability cannot be attributed to the
fact that two other tasks (DotEst andObjMatch) included
in the initial model also involve nonsymbolic number
processing. On a similar note, results for the DotComp
task remained nonsignificant even if we removed Num-

Table 5 Final model results

Predictor F p

NumOrd 63.53 <.001
NumComp 46.53 <.001
DotComp 1.85 .174
ObjMatch 34.04 <.001
Counting 17.67 <.001
DotEst 12.67 <.001
NumLine 42.04 <.001
Ravens 5.78 .016
Reading 37.65 <.001
Age 14.53 .001
Grade 9 NumOrd 9.80 <.001
Grade 9 ObjMatch 4.00 .001
Grade 9 Counting 2.35 .039
Grade 9 NumLine 4.73 <.001
Grade 55.27 <.001
Intercept 461.47 <.001

Note: Overall �ðRÞ2 = .805 (R2 = .810). For grade and all interaction
terms, numerator df = 5; for all other predictors, numerator df = 1. Error
(denominator) df = 1355.

Figure 1 The change in the relation between the seven numerical tasks from the final model (Table 5) and Arithmetic performance
at each grade. Effect sizes correspond to partial-rs taken from the multiple-regression models run at each grade (Table 6), and thus
represent unique contributions. The white line is the effect size that corresponds to a partial-r of p = .05 at each grade.
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Comp –which, while symbolic, shares at least the quantity
comparison aspect with the DotComp task – from the
initial model. In sum, even an approach designed to
maximize the potential predictive influence of the Dot-
Comp task reveals no evidence that it predicts unique
variance in children’s arithmetic performance.
Furthermore, for the DotComp task, if we used just

error rates (instead of the combined performance mea-
sure) results for that task were weaker: the significance of
the (already non-significant) partial-rswas in fact reduced
in each grade. This is important because, typically, only
error rates from the DotComp task are used to estimate
approximate number acuity (note also that mean error
rates are highly correlated with this measure of approxi-
mate number acuity; Sasanguie et al., 2012; Sz~ucs, Nobes,
Devine, Gabriel & Gebuis, 2013; Inglis & Gilmore, 2013).
In sum, how we calculated performance on the DotComp
task is unlikely to explain the lack of any unique relation
between DotComp and Arithmetic.

Finally, one might object that some of the DotComp
trials use stimuli that fall within the subitizing range (≤
4), so results may be biased because we are including
numerosities whose representation is not truly approxi-
mate. Re-running the model using only DotComp trials
with numerosities ≥ 10 resulted in complete elimination
of the DotComp task from the model in only the 3rd step
(as opposed to the 8th step when all DotComp trials
were considered; see Table 4). Hence, the inclusion of
potentially subitizable stimuli is unlikely to account for
the overall lack of unique relation between DotComp
and Arithmetic.

Visual-audio matching

Applying logic similar to that for the DotComp task, we
tested whether the VisuAud task would be rejected from
the final model even if we did not include other tasks
that also involved visual presentation of symbolic

Table 6 Unique relations between each of the continuous predictors from the final model (Table 5) and Arithmetic scores at each
grade

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6

N 208 201 253 252 241 236
NumOrd d �.184 .205 .335 .510 .391 .686

rp �.092 .102 .165 .247 .192 .325
p .198 .159 .010 <.001 .003 <.001

NumComp d .604 .676 .334 .274 .363 .177
rp .289 .320 .165 .136 .178 .088
p <.001 <.001 .010 .034 .006 .185

DotComp d �.026 �.042 �.181 �.208 �.008 .043
rp �.013 �.021 �.090 �.103 �.004 .021
p .857 .774 .161 .108 .949 .748

ObjMatch d .326 .313 .364 .274 .503 .182
rp .161 .155 .179 .136 .244 .091
p .023 .032 .005 .034 <.001 .174

Counting d .160 .048 .181 .255 .206 .367
rp .080 .024 .090 .126 .102 .181
p .262 .739 .160 .049 .120 .006

DotEst d .065 .277 .244 .280 .176 .061
rp .033 .137 .121 .138 .087 .030
p .648 .058 .059 .031 .184 .650

NumLine d .427 .625 .201 .340 .330 .341
rp .209 .298 .100 .167 .163 .168
p .003 <.001 .118 .009 .013 .011

Ravens d .109 .145 .303 �.039 .213 .021
rp .054 .073 .150 �.020 .106 .011
p .446 .318 .019 .760 .108 .875

Reading d .354 .543 .171 .192 .311 .463
rp .174 .262 .085 .096 .153 .226
p .014 <.001 .186 .137 .019 .001

Age d .153 �.096 �.116 �.241 �.288 �.290
rp .076 �.048 �.058 �.120 �.143 �.144
p .283 .511 .368 .062 .030 .030

Note: Multiple regression models with all 10 predictors were run at each grade; thus, all statistics represent unique contributions to the model at that
grade. A positive correlation (and effect size) indicates that better performance on that task was related to better Arithmetic performance.
Abbreviations: d = effectsize, rp = partial-r-value, p = p-value. Values in bold text are significant at p < .05. The top row shows the number of
participants (N) in each grade.
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numbers (NumComp, NumOrd, NumLine tasks).
VisAud obtained at least marginal significance
(p = .076) in the final model only when NumOrd was
omitted from the initial model, indicating that it was
rejected from the model in Table 5 due to high collin-
earity with the NumOrd task (see also Supporting
Information Table S2).

Discussion

The present results show that basic symbolic number
processing accounts for the majority of unique variance
in children’s arithmetic ability in grades 1–6, and that
the nature of this relationship changes dynamically
across grades. The five tasks that showed a significant
interaction with grade were all number processing tasks
(numeral ordering, object-group matching, number-line
estimation, counting, dot-estimation). Figure 1 shows
that number-line estimation was a strong unique predic-
tor of arithmetic ability in early grades (1–2), though this
fell off from grade 3 on. An examination of Table 6
shows that numeral comparison was also a strong
predictor of Arithmetic in grades 1–2. Consistent with
prior work (Booth & Siegler, 2006, 2008; Castronovo &
G€obel, 2012; De Smedt et al., 2009; Desoete et al., 2012;
Durand et al., 2005; Gilmore et al., 2010; Gunderson
et al., 2012; Holloway & Ansari, 2009; Jordan et al.,
2009, 2010; Kolkman et al., 2013; Lonnemanna et al.,
2011; Mundy & Gilmore, 2009; Reeve et al., 2012;
Reigosa-Crespo et al., 2012; Sasanguie et al., 2012,
2013b), our results indicate that assessing the relative
magnitude of symbolic numbers – both by directly
comparing them with one another and by mapping them
onto a visuo-spatial number-line – is perhaps the most
important basic numerical ability in the early stages of
learning arithmetic skills.

By contrast, numeral ordering, while a poor predictor
of arithmetic ability in grade 1, showed a steady increase
in unique predictive capacity until grade 6, at which
point it was the strongest among all predictors. This is
the first demonstration that symbolic number-ordering
ability is highly predictive of more complex math skills in
children, and is consistent with prior work showing that
performance on this task is a strong predictor of complex
mental arithmetic ability in adults (Lyons & Beilock,
2011). As the symbolic number system matures, it may
be that mastery of basic arithmetic skills increasingly
relies on accessing the ordinal information in numerical
symbols as opposed to information about relative
magnitude (i.e. cardinality). Note that this shift from
cardinal to ordinal processing is unlikely to be due to the
fact that the NumOrd task was simply more difficult

than the NumComp task. First, NumOrd was not the
most difficult task at any grade (see Table 2), and it
became a stronger predictor even as overall performance
was improving. Second, if the NumOrd task were more
difficult for reasons unrelated to number processing (e.g.
because it tapped into domain-general factors such as
working memory or basic processing speed), then con-
trolling for Ravens and StimResp should have eliminated
the relation between NumOrd and Arithmetic.

Interestingly, in grades 3–5, it is difficult to identify any
one basic numerical skill that supersedes the others. One
possibility in keeping with a suggestionmade byKolkman
et al. (2013) is that basic numerical skills are undergoing a
kind of consolidation process at this point. It may be that
disparate basic skills are being realigned to support a
broader sense of mathematical understanding.

A critical result of the present study is that dot-
comparison (DotComp) performance did not predict
unique arithmetic variance, either when considering all six
grades at once (N = 1391; see Table 5), or in any of the
individual grades (Table 6). This is important because
many studies have shown that performance on DotComp
tasks akin to the one we administered here is predictive of
various math abilities (Bonny & Lourenco, 2013; Desoete
et al., 2012; Gilmore et al., 2010; Halberda et al., 2008,
2012; Libertus et al., 2011, 2012, 2013; Lonnemanna
et al., 2011; Lourenco et al., 2012; Lyons&Beilock, 2011;
Mazzocco et al., 2011a, 2011b; Piazza et al., 2010). None
of those studies controlled for the range of other basic
numerical and non-numerical factors that we do here;
further, only one study considered a larger sample
(Halberda et al., 2012), and that study controlled only
for self-reported general IQ. It is worth noting, then, that
the zero-order correlations in Table 2 show a significant
relation between dot-comparison and mental arithmetic
at most grades in our sample. From this, one might well
conclude – as many previous researchers have – that dot-
comparison ability (and by extension, approximate num-
ber processing) is indeed an important precursor for more
complex math processing. The partial correlations in
Table 6 show that this conclusion is premature. Consistent
with prior work (Castronovo & G€obel, 2012; Fuhs &
McNeil, 2013; Holloway & Ansari, 2009; Kolkman et al.,
2013; Sasanguie et al., 2013a, 2013b), we find that, once
one controls for other basic numerical abilities, this
relation is eliminated. Furthermore, even when the other
nonsymbolic tasks related to approximate number pro-
cessing (dot-estimation and object-group matching) were
removed from the model, dot-comparison remained a
non-significant predictor of arithmetic ability in all
respects. Our results therefore provide a strong caution
to claims about the importance of approximate number
processing for more complexmath skills. It is important to
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note that our data cannot speak to the role of approximate
number processing prior to the onset of formal schooling
(though for similar results in children as young as 4, see
Fuhs & McNeil, 2013; Kolkman et al., 2013; Sasanguie
et al., 2013a). Regardless, at least by the age of roughly
6–7 years, the importance of the approximate number
system is largely overshadowed by other basic numerical
and cognitive abilities. On a cognitive level, this implies
that the underlying processes or representations involved
in these other numerical tasks are more uniquely and
directly bound to those that underlie arithmetic (in
children grades 1–6). On a practical level, if one could
choose only one or two tasks, say, for a diagnostic battery
in an educational setting, the zero-order correlations
(Table 3) indicate that the DotComp task would not be a
bad choice; but based on the multiple regression results
(e.g. Figure 1), other numerical tasks might prove more
effective – though exactly which task one might choose
would depend on the grade in question.
Our results demonstrate for the first time the dynamic

relationship between basic numerical abilities and early
arithmetic skills over the early elementary grades. This
underscores the importance of considering developmen-
tal changes when drawing conclusions about the basic
numerical foundations of more complex mathematics.
This work may help economize and focus future longi-
tudinal studies on specific numerical skills and develop-
mental time-points to allow for stricter causal inferences
about the relation between specific basic numerical and
math abilities at different points in development. As
such, this work offers a unifying perspective through
which to interpret the current landscape of disjointed
and sometimes contradictory results relating to the
cognitive foundations of arithmetic. This work may also
help better inform efforts to bridge educational practices
with developmental cognitive research.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Table S1. Raw means at each Grade (ER: error-rates; RT:
reaction-times) on tasks for which a composite performance
measure was computed. Values in parentheses are standard-
errors.
Table S2. Correlations (and their corresponding effect-sizes,

d) between numerical tasks. Values below the main diagonal
indicate zero-order correlations. Values above the main diag-
onal indicate partial-correlations controlling for non-numerical
factors [Reading, Ravens, StimResp, and Age; df=1385]. Note
that Age was non-centered, so the partial-correlations are
independent of concomitant improvements in performance
across tasks expected in older children (see, e.g., Table S1). All
correlations were significant at p<.001, with the exception of
the partial-correlation between DotComp and DotEst (p=.673).

© 2014 John Wiley & Sons Ltd

726 Ian M. Lyons et al.


